intrin.hpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_HAL_INTRIN_HPP
#define OPENCV_HAL_INTRIN_HPP

#include <cmath>
#include <float.h>
#include <stdlib.h>
#include "opencv2/core/cvdef.h"

#define OPENCV_HAL_ADD(a, b) ((a) + (b))
#define OPENCV_HAL_AND(a, b) ((a) & (b))
#define OPENCV_HAL_NOP(a) (a)
#define OPENCV_HAL_1ST(a, b) (a)

namespace {
inline unsigned int trailingZeros32(unsigned int value) {
#if defined(_MSC_VER)
#if (_MSC_VER < 1700) || defined(_M_ARM) || defined(_M_ARM64)
    unsigned long index = 0;
    _BitScanForward(&index, value);
    return (unsigned int)index;
#elif defined(__clang__)
    // clang-cl doesn't export _tzcnt_u32 for non BMI systems
    return value ? __builtin_ctz(value) : 32;
#else
    return _tzcnt_u32(value);
#endif
#elif defined(__GNUC__) || defined(__GNUG__)
    return __builtin_ctz(value);
#elif defined(__ICC) || defined(__INTEL_COMPILER)
    return _bit_scan_forward(value);
#elif defined(__clang__)
    return llvm.cttz.i32(value, true);
#else
    static const int MultiplyDeBruijnBitPosition[32] = {
        0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
        31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 };
    return MultiplyDeBruijnBitPosition[((uint32_t)((value & -value) * 0x077CB531U)) >> 27];
#endif
}
}

// unlike HAL API, which is in cv::hal,
// we put intrinsics into cv namespace to make its
// access from within opencv code more accessible
namespace cv {

namespace hal {

enum StoreMode
{
    STORE_UNALIGNED = 0,
    STORE_ALIGNED = 1,
    STORE_ALIGNED_NOCACHE = 2
};

}

// TODO FIXIT: Don't use "God" traits. Split on separate cases.
template<typename _Tp> struct V_TypeTraits
{
};

#define CV_INTRIN_DEF_TYPE_TRAITS(type, int_type_, uint_type_, abs_type_, w_type_, q_type_, sum_type_) \
    template<> struct V_TypeTraits<type> \
    { \
        typedef type value_type; \
        typedef int_type_ int_type; \
        typedef abs_type_ abs_type; \
        typedef uint_type_ uint_type; \
        typedef w_type_ w_type; \
        typedef q_type_ q_type; \
        typedef sum_type_ sum_type; \
    \
        static inline int_type reinterpret_int(type x) \
        { \
            union { type l; int_type i; } v; \
            v.l = x; \
            return v.i; \
        } \
    \
        static inline type reinterpret_from_int(int_type x) \
        { \
            union { type l; int_type i; } v; \
            v.i = x; \
            return v.l; \
        } \
    }

#define CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(type, int_type_, uint_type_, abs_type_, w_type_, sum_type_) \
    template<> struct V_TypeTraits<type> \
    { \
        typedef type value_type; \
        typedef int_type_ int_type; \
        typedef abs_type_ abs_type; \
        typedef uint_type_ uint_type; \
        typedef w_type_ w_type; \
        typedef sum_type_ sum_type; \
    \
        static inline int_type reinterpret_int(type x) \
        { \
            union { type l; int_type i; } v; \
            v.l = x; \
            return v.i; \
        } \
    \
        static inline type reinterpret_from_int(int_type x) \
        { \
            union { type l; int_type i; } v; \
            v.i = x; \
            return v.l; \
        } \
    }

CV_INTRIN_DEF_TYPE_TRAITS(uchar, schar, uchar, uchar, ushort, unsigned, unsigned);
CV_INTRIN_DEF_TYPE_TRAITS(schar, schar, uchar, uchar, short, int, int);
CV_INTRIN_DEF_TYPE_TRAITS(ushort, short, ushort, ushort, unsigned, uint64, unsigned);
CV_INTRIN_DEF_TYPE_TRAITS(short, short, ushort, ushort, int, int64, int);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(unsigned, int, unsigned, unsigned, uint64, unsigned);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(int, int, unsigned, unsigned, int64, int);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(float, int, unsigned, float, double, float);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(uint64, int64, uint64, uint64, void, uint64);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(int64, int64, uint64, uint64, void, int64);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(double, int64, uint64, double, void, double);

#ifndef CV_DOXYGEN

#ifndef CV_CPU_OPTIMIZATION_HAL_NAMESPACE
#ifdef CV_FORCE_SIMD128_CPP
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE hal_EMULATOR_CPP
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace hal_EMULATOR_CPP {
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#elif defined(CV_CPU_DISPATCH_MODE)
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE __CV_CAT(hal_, CV_CPU_DISPATCH_MODE)
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace __CV_CAT(hal_, CV_CPU_DISPATCH_MODE) {
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#else
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE hal_baseline
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace hal_baseline {
    #define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#endif
#endif // CV_CPU_OPTIMIZATION_HAL_NAMESPACE

CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
using namespace CV_CPU_OPTIMIZATION_HAL_NAMESPACE;
#endif
}

#ifdef CV_DOXYGEN
#   undef CV_AVX2
#   undef CV_SSE2
#   undef CV_NEON
#   undef CV_VSX
#   undef CV_FP16
#   undef CV_MSA
#   undef CV_RVV
#endif

#if (CV_SSE2 || CV_NEON || CV_VSX || CV_MSA || CV_WASM_SIMD || CV_RVV) && !defined(CV_FORCE_SIMD128_CPP)
#define CV__SIMD_FORWARD 128
#include "opencv2/core/hal/intrin_forward.hpp"
#endif

#if CV_SSE2 && !defined(CV_FORCE_SIMD128_CPP)

#include "opencv2/core/hal/intrin_sse_em.hpp"
#include "opencv2/core/hal/intrin_sse.hpp"

#elif CV_NEON && !defined(CV_FORCE_SIMD128_CPP)

#include "opencv2/core/hal/intrin_neon.hpp"

#elif CV_VSX && !defined(CV_FORCE_SIMD128_CPP)

#include "opencv2/core/hal/intrin_vsx.hpp"

#elif CV_MSA && !defined(CV_FORCE_SIMD128_CPP)

#include "opencv2/core/hal/intrin_msa.hpp"

#elif CV_WASM_SIMD && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_wasm.hpp"

#elif CV_RVV && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_rvv.hpp"

#else

#include "opencv2/core/hal/intrin_cpp.hpp"

#endif

// AVX2 can be used together with SSE2, so
// we define those two sets of intrinsics at once.
// Most of the intrinsics do not conflict (the proper overloaded variant is
// resolved by the argument types, e.g. v_float32x4 ~ SSE2, v_float32x8 ~ AVX2),
// but some of AVX2 intrinsics get v256_ prefix instead of v_, e.g. v256_load() vs v_load().
// Correspondingly, the wide intrinsics (which are mapped to the "widest"
// available instruction set) will get vx_ prefix
// (and will be mapped to v256_ counterparts) (e.g. vx_load() => v256_load())
#if CV_AVX2

#define CV__SIMD_FORWARD 256
#include "opencv2/core/hal/intrin_forward.hpp"
#include "opencv2/core/hal/intrin_avx.hpp"

#endif

// AVX512 can be used together with SSE2 and AVX2, so
// we define those sets of intrinsics at once.
// For some of AVX512 intrinsics get v512_ prefix instead of v_, e.g. v512_load() vs v_load().
// Wide intrinsics will be mapped to v512_ counterparts in this case(e.g. vx_load() => v512_load())
#if CV_AVX512_SKX

#define CV__SIMD_FORWARD 512
#include "opencv2/core/hal/intrin_forward.hpp"
#include "opencv2/core/hal/intrin_avx512.hpp"

#endif

//! @cond IGNORED

namespace cv {

#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
#endif

#ifndef CV_SIMD128
#define CV_SIMD128 0
#endif

#ifndef CV_SIMD128_CPP
#define CV_SIMD128_CPP 0
#endif

#ifndef CV_SIMD128_64F
#define CV_SIMD128_64F 0
#endif

#ifndef CV_SIMD256
#define CV_SIMD256 0
#endif

#ifndef CV_SIMD256_64F
#define CV_SIMD256_64F 0
#endif

#ifndef CV_SIMD512
#define CV_SIMD512 0
#endif

#ifndef CV_SIMD512_64F
#define CV_SIMD512_64F 0
#endif

#ifndef CV_SIMD128_FP16
#define CV_SIMD128_FP16 0
#endif

#ifndef CV_SIMD256_FP16
#define CV_SIMD256_FP16 0
#endif

#ifndef CV_SIMD512_FP16
#define CV_SIMD512_FP16 0
#endif

//==================================================================================================

template<typename _Tp> struct V_RegTraits
{
};

#define CV_DEF_REG_TRAITS(prefix, _reg, lane_type, suffix, _u_reg, _w_reg, _q_reg, _int_reg, _round_reg) \
    template<> struct V_RegTraits<_reg> \
    { \
        typedef _reg reg; \
        typedef _u_reg u_reg; \
        typedef _w_reg w_reg; \
        typedef _q_reg q_reg; \
        typedef _int_reg int_reg; \
        typedef _round_reg round_reg; \
    }

#if CV_SIMD128 || CV_SIMD128_CPP
    CV_DEF_REG_TRAITS(v, v_uint8x16, uchar, u8, v_uint8x16, v_uint16x8, v_uint32x4, v_int8x16, void);
    CV_DEF_REG_TRAITS(v, v_int8x16, schar, s8, v_uint8x16, v_int16x8, v_int32x4, v_int8x16, void);
    CV_DEF_REG_TRAITS(v, v_uint16x8, ushort, u16, v_uint16x8, v_uint32x4, v_uint64x2, v_int16x8, void);
    CV_DEF_REG_TRAITS(v, v_int16x8, short, s16, v_uint16x8, v_int32x4, v_int64x2, v_int16x8, void);
    CV_DEF_REG_TRAITS(v, v_uint32x4, unsigned, u32, v_uint32x4, v_uint64x2, void, v_int32x4, void);
    CV_DEF_REG_TRAITS(v, v_int32x4, int, s32, v_uint32x4, v_int64x2, void, v_int32x4, void);
#if CV_SIMD128_64F || CV_SIMD128_CPP
    CV_DEF_REG_TRAITS(v, v_float32x4, float, f32, v_float32x4, v_float64x2, void, v_int32x4, v_int32x4);
#else
    CV_DEF_REG_TRAITS(v, v_float32x4, float, f32, v_float32x4, void, void, v_int32x4, v_int32x4);
#endif
    CV_DEF_REG_TRAITS(v, v_uint64x2, uint64, u64, v_uint64x2, void, void, v_int64x2, void);
    CV_DEF_REG_TRAITS(v, v_int64x2, int64, s64, v_uint64x2, void, void, v_int64x2, void);
#if CV_SIMD128_64F
    CV_DEF_REG_TRAITS(v, v_float64x2, double, f64, v_float64x2, void, void, v_int64x2, v_int32x4);
#endif
#endif

#if CV_SIMD256
    CV_DEF_REG_TRAITS(v256, v_uint8x32, uchar, u8, v_uint8x32, v_uint16x16, v_uint32x8, v_int8x32, void);
    CV_DEF_REG_TRAITS(v256, v_int8x32, schar, s8, v_uint8x32, v_int16x16, v_int32x8, v_int8x32, void);
    CV_DEF_REG_TRAITS(v256, v_uint16x16, ushort, u16, v_uint16x16, v_uint32x8, v_uint64x4, v_int16x16, void);
    CV_DEF_REG_TRAITS(v256, v_int16x16, short, s16, v_uint16x16, v_int32x8, v_int64x4, v_int16x16, void);
    CV_DEF_REG_TRAITS(v256, v_uint32x8, unsigned, u32, v_uint32x8, v_uint64x4, void, v_int32x8, void);
    CV_DEF_REG_TRAITS(v256, v_int32x8, int, s32, v_uint32x8, v_int64x4, void, v_int32x8, void);
    CV_DEF_REG_TRAITS(v256, v_float32x8, float, f32, v_float32x8, v_float64x4, void, v_int32x8, v_int32x8);
    CV_DEF_REG_TRAITS(v256, v_uint64x4, uint64, u64, v_uint64x4, void, void, v_int64x4, void);
    CV_DEF_REG_TRAITS(v256, v_int64x4, int64, s64, v_uint64x4, void, void, v_int64x4, void);
    CV_DEF_REG_TRAITS(v256, v_float64x4, double, f64, v_float64x4, void, void, v_int64x4, v_int32x8);
#endif

#if CV_SIMD512
    CV_DEF_REG_TRAITS(v512, v_uint8x64, uchar, u8, v_uint8x64, v_uint16x32, v_uint32x16, v_int8x64, void);
    CV_DEF_REG_TRAITS(v512, v_int8x64, schar, s8, v_uint8x64, v_int16x32, v_int32x16, v_int8x64, void);
    CV_DEF_REG_TRAITS(v512, v_uint16x32, ushort, u16, v_uint16x32, v_uint32x16, v_uint64x8, v_int16x32, void);
    CV_DEF_REG_TRAITS(v512, v_int16x32, short, s16, v_uint16x32, v_int32x16, v_int64x8, v_int16x32, void);
    CV_DEF_REG_TRAITS(v512, v_uint32x16, unsigned, u32, v_uint32x16, v_uint64x8, void, v_int32x16, void);
    CV_DEF_REG_TRAITS(v512, v_int32x16, int, s32, v_uint32x16, v_int64x8, void, v_int32x16, void);
    CV_DEF_REG_TRAITS(v512, v_float32x16, float, f32, v_float32x16, v_float64x8, void, v_int32x16, v_int32x16);
    CV_DEF_REG_TRAITS(v512, v_uint64x8, uint64, u64, v_uint64x8, void, void, v_int64x8, void);
    CV_DEF_REG_TRAITS(v512, v_int64x8, int64, s64, v_uint64x8, void, void, v_int64x8, void);
    CV_DEF_REG_TRAITS(v512, v_float64x8, double, f64, v_float64x8, void, void, v_int64x8, v_int32x16);
#endif
//! @endcond

#if CV_SIMD512 && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 512)
#define CV__SIMD_NAMESPACE simd512
namespace CV__SIMD_NAMESPACE {
    #define CV_SIMD 1
    #define CV_SIMD_64F CV_SIMD512_64F
    #define CV_SIMD_FP16 CV_SIMD512_FP16
    #define CV_SIMD_WIDTH 64
//! @addtogroup core_hal_intrin
//! @{
    //! @brief Maximum available vector register capacity 8-bit unsigned integer values
    typedef v_uint8x64    v_uint8;
    //! @brief Maximum available vector register capacity 8-bit signed integer values
    typedef v_int8x64     v_int8;
    //! @brief Maximum available vector register capacity 16-bit unsigned integer values
    typedef v_uint16x32   v_uint16;
    //! @brief Maximum available vector register capacity 16-bit signed integer values
    typedef v_int16x32    v_int16;
    //! @brief Maximum available vector register capacity 32-bit unsigned integer values
    typedef v_uint32x16   v_uint32;
    //! @brief Maximum available vector register capacity 32-bit signed integer values
    typedef v_int32x16    v_int32;
    //! @brief Maximum available vector register capacity 64-bit unsigned integer values
    typedef v_uint64x8    v_uint64;
    //! @brief Maximum available vector register capacity 64-bit signed integer values
    typedef v_int64x8     v_int64;
    //! @brief Maximum available vector register capacity 32-bit floating point values (single precision)
    typedef v_float32x16  v_float32;
    #if CV_SIMD512_64F
    //! @brief Maximum available vector register capacity 64-bit floating point values (double precision)
    typedef v_float64x8   v_float64;
    #endif
//! @}

    #define VXPREFIX(func) v512##func
} // namespace
using namespace CV__SIMD_NAMESPACE;
#elif CV_SIMD256 && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 256)
#define CV__SIMD_NAMESPACE simd256
namespace CV__SIMD_NAMESPACE {
    #define CV_SIMD 1
    #define CV_SIMD_64F CV_SIMD256_64F
    #define CV_SIMD_FP16 CV_SIMD256_FP16
    #define CV_SIMD_WIDTH 32
//! @addtogroup core_hal_intrin
//! @{
    //! @brief Maximum available vector register capacity 8-bit unsigned integer values
    typedef v_uint8x32   v_uint8;
    //! @brief Maximum available vector register capacity 8-bit signed integer values
    typedef v_int8x32    v_int8;
    //! @brief Maximum available vector register capacity 16-bit unsigned integer values
    typedef v_uint16x16  v_uint16;
    //! @brief Maximum available vector register capacity 16-bit signed integer values
    typedef v_int16x16   v_int16;
    //! @brief Maximum available vector register capacity 32-bit unsigned integer values
    typedef v_uint32x8   v_uint32;
    //! @brief Maximum available vector register capacity 32-bit signed integer values
    typedef v_int32x8    v_int32;
    //! @brief Maximum available vector register capacity 64-bit unsigned integer values
    typedef v_uint64x4   v_uint64;
    //! @brief Maximum available vector register capacity 64-bit signed integer values
    typedef v_int64x4    v_int64;
    //! @brief Maximum available vector register capacity 32-bit floating point values (single precision)
    typedef v_float32x8  v_float32;
    #if CV_SIMD256_64F
    //! @brief Maximum available vector register capacity 64-bit floating point values (double precision)
    typedef v_float64x4  v_float64;
    #endif
//! @}

    #define VXPREFIX(func) v256##func
} // namespace
using namespace CV__SIMD_NAMESPACE;
#elif (CV_SIMD128 || CV_SIMD128_CPP) && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 128)
#if defined CV_SIMD128_CPP
#define CV__SIMD_NAMESPACE simd128_cpp
#else
#define CV__SIMD_NAMESPACE simd128
#endif
namespace CV__SIMD_NAMESPACE {
    #define CV_SIMD CV_SIMD128
    #define CV_SIMD_64F CV_SIMD128_64F
    #define CV_SIMD_WIDTH 16
//! @addtogroup core_hal_intrin
//! @{
    //! @brief Maximum available vector register capacity 8-bit unsigned integer values
    typedef v_uint8x16  v_uint8;
    //! @brief Maximum available vector register capacity 8-bit signed integer values
    typedef v_int8x16   v_int8;
    //! @brief Maximum available vector register capacity 16-bit unsigned integer values
    typedef v_uint16x8  v_uint16;
    //! @brief Maximum available vector register capacity 16-bit signed integer values
    typedef v_int16x8   v_int16;
    //! @brief Maximum available vector register capacity 32-bit unsigned integer values
    typedef v_uint32x4  v_uint32;
    //! @brief Maximum available vector register capacity 32-bit signed integer values
    typedef v_int32x4   v_int32;
    //! @brief Maximum available vector register capacity 64-bit unsigned integer values
    typedef v_uint64x2  v_uint64;
    //! @brief Maximum available vector register capacity 64-bit signed integer values
    typedef v_int64x2   v_int64;
    //! @brief Maximum available vector register capacity 32-bit floating point values (single precision)
    typedef v_float32x4 v_float32;
    #if CV_SIMD128_64F
    //! @brief Maximum available vector register capacity 64-bit floating point values (double precision)
    typedef v_float64x2 v_float64;
    #endif
//! @}

    #define VXPREFIX(func) v##func
} // namespace
using namespace CV__SIMD_NAMESPACE;
#endif

namespace CV__SIMD_NAMESPACE {
//! @addtogroup core_hal_intrin
//! @{
    //! @name Wide init with value
    //! @{
    //! @brief Create maximum available capacity vector with elements set to a specific value
    inline v_uint8 vx_setall_u8(uchar v) { return VXPREFIX(_setall_u8)(v); }
    inline v_int8 vx_setall_s8(schar v) { return VXPREFIX(_setall_s8)(v); }
    inline v_uint16 vx_setall_u16(ushort v) { return VXPREFIX(_setall_u16)(v); }
    inline v_int16 vx_setall_s16(short v) { return VXPREFIX(_setall_s16)(v); }
    inline v_int32 vx_setall_s32(int v) { return VXPREFIX(_setall_s32)(v); }
    inline v_uint32 vx_setall_u32(unsigned v) { return VXPREFIX(_setall_u32)(v); }
    inline v_float32 vx_setall_f32(float v) { return VXPREFIX(_setall_f32)(v); }
    inline v_int64 vx_setall_s64(int64 v) { return VXPREFIX(_setall_s64)(v); }
    inline v_uint64 vx_setall_u64(uint64 v) { return VXPREFIX(_setall_u64)(v); }
#if CV_SIMD_64F
    inline v_float64 vx_setall_f64(double v) { return VXPREFIX(_setall_f64)(v); }
#endif
    //! @}

    //! @name Wide init with zero
    //! @{
    //! @brief Create maximum available capacity vector with elements set to zero
    inline v_uint8 vx_setzero_u8() { return VXPREFIX(_setzero_u8)(); }
    inline v_int8 vx_setzero_s8() { return VXPREFIX(_setzero_s8)(); }
    inline v_uint16 vx_setzero_u16() { return VXPREFIX(_setzero_u16)(); }
    inline v_int16 vx_setzero_s16() { return VXPREFIX(_setzero_s16)(); }
    inline v_int32 vx_setzero_s32() { return VXPREFIX(_setzero_s32)(); }
    inline v_uint32 vx_setzero_u32() { return VXPREFIX(_setzero_u32)(); }
    inline v_float32 vx_setzero_f32() { return VXPREFIX(_setzero_f32)(); }
    inline v_int64 vx_setzero_s64() { return VXPREFIX(_setzero_s64)(); }
    inline v_uint64 vx_setzero_u64() { return VXPREFIX(_setzero_u64)(); }
#if CV_SIMD_64F
    inline v_float64 vx_setzero_f64() { return VXPREFIX(_setzero_f64)(); }
#endif
    //! @}

    //! @name Wide load from memory
    //! @{
    //! @brief Load maximum available capacity register contents from memory
    inline v_uint8 vx_load(const uchar * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_int8 vx_load(const schar * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_uint16 vx_load(const ushort * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_int16 vx_load(const short * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_int32 vx_load(const int * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_uint32 vx_load(const unsigned * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_float32 vx_load(const float * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_int64 vx_load(const int64 * ptr) { return VXPREFIX(_load)(ptr); }
    inline v_uint64 vx_load(const uint64 * ptr) { return VXPREFIX(_load)(ptr); }
#if CV_SIMD_64F
    inline v_float64 vx_load(const double * ptr) { return VXPREFIX(_load)(ptr); }
#endif
    //! @}

    //! @name Wide load from memory(aligned)
    //! @{
    //! @brief Load maximum available capacity register contents from memory(aligned)
    inline v_uint8 vx_load_aligned(const uchar * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_int8 vx_load_aligned(const schar * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_uint16 vx_load_aligned(const ushort * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_int16 vx_load_aligned(const short * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_int32 vx_load_aligned(const int * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_uint32 vx_load_aligned(const unsigned * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_float32 vx_load_aligned(const float * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_int64 vx_load_aligned(const int64 * ptr) { return VXPREFIX(_load_aligned)(ptr); }
    inline v_uint64 vx_load_aligned(const uint64 * ptr) { return VXPREFIX(_load_aligned)(ptr); }
#if CV_SIMD_64F
    inline v_float64 vx_load_aligned(const double * ptr) { return VXPREFIX(_load_aligned)(ptr); }
#endif
    //! @}

    //! @name Wide load lower half from memory
    //! @{
    //! @brief Load lower half of maximum available capacity register from memory
    inline v_uint8 vx_load_low(const uchar * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_int8 vx_load_low(const schar * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_uint16 vx_load_low(const ushort * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_int16 vx_load_low(const short * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_int32 vx_load_low(const int * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_uint32 vx_load_low(const unsigned * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_float32 vx_load_low(const float * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_int64 vx_load_low(const int64 * ptr) { return VXPREFIX(_load_low)(ptr); }
    inline v_uint64 vx_load_low(const uint64 * ptr) { return VXPREFIX(_load_low)(ptr); }
#if CV_SIMD_64F
    inline v_float64 vx_load_low(const double * ptr) { return VXPREFIX(_load_low)(ptr); }
#endif
    //! @}

    //! @name Wide load halfs from memory
    //! @{
    //! @brief Load maximum available capacity register contents from two memory blocks
    inline v_uint8 vx_load_halves(const uchar * ptr0, const uchar * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_int8 vx_load_halves(const schar * ptr0, const schar * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_uint16 vx_load_halves(const ushort * ptr0, const ushort * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_int16 vx_load_halves(const short * ptr0, const short * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_int32 vx_load_halves(const int * ptr0, const int * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_uint32 vx_load_halves(const unsigned * ptr0, const unsigned * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_float32 vx_load_halves(const float * ptr0, const float * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_int64 vx_load_halves(const int64 * ptr0, const int64 * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
    inline v_uint64 vx_load_halves(const uint64 * ptr0, const uint64 * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
#if CV_SIMD_64F
    inline v_float64 vx_load_halves(const double * ptr0, const double * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
#endif
    //! @}

    //! @name Wide LUT of elements
    //! @{
    //! @brief Load maximum available capacity register contents with array elements by provided indexes
    inline v_uint8 vx_lut(const uchar * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_int8 vx_lut(const schar * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_uint16 vx_lut(const ushort * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_int16 vx_lut(const short* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_int32 vx_lut(const int* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_uint32 vx_lut(const unsigned* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_float32 vx_lut(const float* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_int64 vx_lut(const int64 * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
    inline v_uint64 vx_lut(const uint64 * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
#if CV_SIMD_64F
    inline v_float64 vx_lut(const double* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
#endif
    //! @}

    //! @name Wide LUT of element pairs
    //! @{
    //! @brief Load maximum available capacity register contents with array element pairs by provided indexes
    inline v_uint8 vx_lut_pairs(const uchar * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_int8 vx_lut_pairs(const schar * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_uint16 vx_lut_pairs(const ushort * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_int16 vx_lut_pairs(const short* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_int32 vx_lut_pairs(const int* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_uint32 vx_lut_pairs(const unsigned* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_float32 vx_lut_pairs(const float* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_int64 vx_lut_pairs(const int64 * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
    inline v_uint64 vx_lut_pairs(const uint64 * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
#if CV_SIMD_64F
    inline v_float64 vx_lut_pairs(const double* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
#endif
    //! @}

    //! @name Wide LUT of element quads
    //! @{
    //! @brief Load maximum available capacity register contents with array element quads by provided indexes
    inline v_uint8 vx_lut_quads(const uchar* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
    inline v_int8 vx_lut_quads(const schar* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
    inline v_uint16 vx_lut_quads(const ushort* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
    inline v_int16 vx_lut_quads(const short* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
    inline v_int32 vx_lut_quads(const int* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
    inline v_uint32 vx_lut_quads(const unsigned* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
    inline v_float32 vx_lut_quads(const float* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
    //! @}

    //! @name Wide load with double expansion
    //! @{
    //! @brief Load maximum available capacity register contents from memory with double expand
    inline v_uint16 vx_load_expand(const uchar * ptr) { return VXPREFIX(_load_expand)(ptr); }
    inline v_int16 vx_load_expand(const schar * ptr) { return VXPREFIX(_load_expand)(ptr); }
    inline v_uint32 vx_load_expand(const ushort * ptr) { return VXPREFIX(_load_expand)(ptr); }
    inline v_int32 vx_load_expand(const short* ptr) { return VXPREFIX(_load_expand)(ptr); }
    inline v_int64 vx_load_expand(const int* ptr) { return VXPREFIX(_load_expand)(ptr); }
    inline v_uint64 vx_load_expand(const unsigned* ptr) { return VXPREFIX(_load_expand)(ptr); }
    inline v_float32 vx_load_expand(const float16_t * ptr) { return VXPREFIX(_load_expand)(ptr); }
    //! @}

    //! @name Wide load with quad expansion
    //! @{
    //! @brief Load maximum available capacity register contents from memory with quad expand
    inline v_uint32 vx_load_expand_q(const uchar * ptr) { return VXPREFIX(_load_expand_q)(ptr); }
    inline v_int32 vx_load_expand_q(const schar * ptr) { return VXPREFIX(_load_expand_q)(ptr); }
    //! @}

    /** @brief SIMD processing state cleanup call */
    inline void vx_cleanup() { VXPREFIX(_cleanup)(); }


//! @cond IGNORED

    // backward compatibility
    template<typename _Tp, typename _Tvec> static inline
    void vx_store(_Tp* dst, const _Tvec& v) { return v_store(dst, v); }
    // backward compatibility
    template<typename _Tp, typename _Tvec> static inline
    void vx_store_aligned(_Tp* dst, const _Tvec& v) { return v_store_aligned(dst, v); }

//! @endcond


//! @}
    #undef VXPREFIX
} // namespace

//! @cond IGNORED
#ifndef CV_SIMD_64F
#define CV_SIMD_64F 0
#endif

#ifndef CV_SIMD_FP16
#define CV_SIMD_FP16 0  //!< Defined to 1 on native support of operations with float16x8_t / float16x16_t (SIMD256) types
#endif

#ifndef CV_SIMD
#define CV_SIMD 0
#endif

#include "simd_utils.impl.hpp"

#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
#endif

} // cv::

//! @endcond

#endif