intrin.hpp
30.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_HAL_INTRIN_HPP
#define OPENCV_HAL_INTRIN_HPP
#include <cmath>
#include <float.h>
#include <stdlib.h>
#include "opencv2/core/cvdef.h"
#define OPENCV_HAL_ADD(a, b) ((a) + (b))
#define OPENCV_HAL_AND(a, b) ((a) & (b))
#define OPENCV_HAL_NOP(a) (a)
#define OPENCV_HAL_1ST(a, b) (a)
namespace {
inline unsigned int trailingZeros32(unsigned int value) {
#if defined(_MSC_VER)
#if (_MSC_VER < 1700) || defined(_M_ARM) || defined(_M_ARM64)
unsigned long index = 0;
_BitScanForward(&index, value);
return (unsigned int)index;
#elif defined(__clang__)
// clang-cl doesn't export _tzcnt_u32 for non BMI systems
return value ? __builtin_ctz(value) : 32;
#else
return _tzcnt_u32(value);
#endif
#elif defined(__GNUC__) || defined(__GNUG__)
return __builtin_ctz(value);
#elif defined(__ICC) || defined(__INTEL_COMPILER)
return _bit_scan_forward(value);
#elif defined(__clang__)
return llvm.cttz.i32(value, true);
#else
static const int MultiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 };
return MultiplyDeBruijnBitPosition[((uint32_t)((value & -value) * 0x077CB531U)) >> 27];
#endif
}
}
// unlike HAL API, which is in cv::hal,
// we put intrinsics into cv namespace to make its
// access from within opencv code more accessible
namespace cv {
namespace hal {
enum StoreMode
{
STORE_UNALIGNED = 0,
STORE_ALIGNED = 1,
STORE_ALIGNED_NOCACHE = 2
};
}
// TODO FIXIT: Don't use "God" traits. Split on separate cases.
template<typename _Tp> struct V_TypeTraits
{
};
#define CV_INTRIN_DEF_TYPE_TRAITS(type, int_type_, uint_type_, abs_type_, w_type_, q_type_, sum_type_) \
template<> struct V_TypeTraits<type> \
{ \
typedef type value_type; \
typedef int_type_ int_type; \
typedef abs_type_ abs_type; \
typedef uint_type_ uint_type; \
typedef w_type_ w_type; \
typedef q_type_ q_type; \
typedef sum_type_ sum_type; \
\
static inline int_type reinterpret_int(type x) \
{ \
union { type l; int_type i; } v; \
v.l = x; \
return v.i; \
} \
\
static inline type reinterpret_from_int(int_type x) \
{ \
union { type l; int_type i; } v; \
v.i = x; \
return v.l; \
} \
}
#define CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(type, int_type_, uint_type_, abs_type_, w_type_, sum_type_) \
template<> struct V_TypeTraits<type> \
{ \
typedef type value_type; \
typedef int_type_ int_type; \
typedef abs_type_ abs_type; \
typedef uint_type_ uint_type; \
typedef w_type_ w_type; \
typedef sum_type_ sum_type; \
\
static inline int_type reinterpret_int(type x) \
{ \
union { type l; int_type i; } v; \
v.l = x; \
return v.i; \
} \
\
static inline type reinterpret_from_int(int_type x) \
{ \
union { type l; int_type i; } v; \
v.i = x; \
return v.l; \
} \
}
CV_INTRIN_DEF_TYPE_TRAITS(uchar, schar, uchar, uchar, ushort, unsigned, unsigned);
CV_INTRIN_DEF_TYPE_TRAITS(schar, schar, uchar, uchar, short, int, int);
CV_INTRIN_DEF_TYPE_TRAITS(ushort, short, ushort, ushort, unsigned, uint64, unsigned);
CV_INTRIN_DEF_TYPE_TRAITS(short, short, ushort, ushort, int, int64, int);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(unsigned, int, unsigned, unsigned, uint64, unsigned);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(int, int, unsigned, unsigned, int64, int);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(float, int, unsigned, float, double, float);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(uint64, int64, uint64, uint64, void, uint64);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(int64, int64, uint64, uint64, void, int64);
CV_INTRIN_DEF_TYPE_TRAITS_NO_Q_TYPE(double, int64, uint64, double, void, double);
#ifndef CV_DOXYGEN
#ifndef CV_CPU_OPTIMIZATION_HAL_NAMESPACE
#ifdef CV_FORCE_SIMD128_CPP
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE hal_EMULATOR_CPP
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace hal_EMULATOR_CPP {
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#elif defined(CV_CPU_DISPATCH_MODE)
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE __CV_CAT(hal_, CV_CPU_DISPATCH_MODE)
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace __CV_CAT(hal_, CV_CPU_DISPATCH_MODE) {
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#else
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE hal_baseline
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN namespace hal_baseline {
#define CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END }
#endif
#endif // CV_CPU_OPTIMIZATION_HAL_NAMESPACE
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
using namespace CV_CPU_OPTIMIZATION_HAL_NAMESPACE;
#endif
}
#ifdef CV_DOXYGEN
# undef CV_AVX2
# undef CV_SSE2
# undef CV_NEON
# undef CV_VSX
# undef CV_FP16
# undef CV_MSA
# undef CV_RVV
#endif
#if (CV_SSE2 || CV_NEON || CV_VSX || CV_MSA || CV_WASM_SIMD || CV_RVV) && !defined(CV_FORCE_SIMD128_CPP)
#define CV__SIMD_FORWARD 128
#include "opencv2/core/hal/intrin_forward.hpp"
#endif
#if CV_SSE2 && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_sse_em.hpp"
#include "opencv2/core/hal/intrin_sse.hpp"
#elif CV_NEON && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_neon.hpp"
#elif CV_VSX && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_vsx.hpp"
#elif CV_MSA && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_msa.hpp"
#elif CV_WASM_SIMD && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_wasm.hpp"
#elif CV_RVV && !defined(CV_FORCE_SIMD128_CPP)
#include "opencv2/core/hal/intrin_rvv.hpp"
#else
#include "opencv2/core/hal/intrin_cpp.hpp"
#endif
// AVX2 can be used together with SSE2, so
// we define those two sets of intrinsics at once.
// Most of the intrinsics do not conflict (the proper overloaded variant is
// resolved by the argument types, e.g. v_float32x4 ~ SSE2, v_float32x8 ~ AVX2),
// but some of AVX2 intrinsics get v256_ prefix instead of v_, e.g. v256_load() vs v_load().
// Correspondingly, the wide intrinsics (which are mapped to the "widest"
// available instruction set) will get vx_ prefix
// (and will be mapped to v256_ counterparts) (e.g. vx_load() => v256_load())
#if CV_AVX2
#define CV__SIMD_FORWARD 256
#include "opencv2/core/hal/intrin_forward.hpp"
#include "opencv2/core/hal/intrin_avx.hpp"
#endif
// AVX512 can be used together with SSE2 and AVX2, so
// we define those sets of intrinsics at once.
// For some of AVX512 intrinsics get v512_ prefix instead of v_, e.g. v512_load() vs v_load().
// Wide intrinsics will be mapped to v512_ counterparts in this case(e.g. vx_load() => v512_load())
#if CV_AVX512_SKX
#define CV__SIMD_FORWARD 512
#include "opencv2/core/hal/intrin_forward.hpp"
#include "opencv2/core/hal/intrin_avx512.hpp"
#endif
//! @cond IGNORED
namespace cv {
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
#endif
#ifndef CV_SIMD128
#define CV_SIMD128 0
#endif
#ifndef CV_SIMD128_CPP
#define CV_SIMD128_CPP 0
#endif
#ifndef CV_SIMD128_64F
#define CV_SIMD128_64F 0
#endif
#ifndef CV_SIMD256
#define CV_SIMD256 0
#endif
#ifndef CV_SIMD256_64F
#define CV_SIMD256_64F 0
#endif
#ifndef CV_SIMD512
#define CV_SIMD512 0
#endif
#ifndef CV_SIMD512_64F
#define CV_SIMD512_64F 0
#endif
#ifndef CV_SIMD128_FP16
#define CV_SIMD128_FP16 0
#endif
#ifndef CV_SIMD256_FP16
#define CV_SIMD256_FP16 0
#endif
#ifndef CV_SIMD512_FP16
#define CV_SIMD512_FP16 0
#endif
//==================================================================================================
template<typename _Tp> struct V_RegTraits
{
};
#define CV_DEF_REG_TRAITS(prefix, _reg, lane_type, suffix, _u_reg, _w_reg, _q_reg, _int_reg, _round_reg) \
template<> struct V_RegTraits<_reg> \
{ \
typedef _reg reg; \
typedef _u_reg u_reg; \
typedef _w_reg w_reg; \
typedef _q_reg q_reg; \
typedef _int_reg int_reg; \
typedef _round_reg round_reg; \
}
#if CV_SIMD128 || CV_SIMD128_CPP
CV_DEF_REG_TRAITS(v, v_uint8x16, uchar, u8, v_uint8x16, v_uint16x8, v_uint32x4, v_int8x16, void);
CV_DEF_REG_TRAITS(v, v_int8x16, schar, s8, v_uint8x16, v_int16x8, v_int32x4, v_int8x16, void);
CV_DEF_REG_TRAITS(v, v_uint16x8, ushort, u16, v_uint16x8, v_uint32x4, v_uint64x2, v_int16x8, void);
CV_DEF_REG_TRAITS(v, v_int16x8, short, s16, v_uint16x8, v_int32x4, v_int64x2, v_int16x8, void);
CV_DEF_REG_TRAITS(v, v_uint32x4, unsigned, u32, v_uint32x4, v_uint64x2, void, v_int32x4, void);
CV_DEF_REG_TRAITS(v, v_int32x4, int, s32, v_uint32x4, v_int64x2, void, v_int32x4, void);
#if CV_SIMD128_64F || CV_SIMD128_CPP
CV_DEF_REG_TRAITS(v, v_float32x4, float, f32, v_float32x4, v_float64x2, void, v_int32x4, v_int32x4);
#else
CV_DEF_REG_TRAITS(v, v_float32x4, float, f32, v_float32x4, void, void, v_int32x4, v_int32x4);
#endif
CV_DEF_REG_TRAITS(v, v_uint64x2, uint64, u64, v_uint64x2, void, void, v_int64x2, void);
CV_DEF_REG_TRAITS(v, v_int64x2, int64, s64, v_uint64x2, void, void, v_int64x2, void);
#if CV_SIMD128_64F
CV_DEF_REG_TRAITS(v, v_float64x2, double, f64, v_float64x2, void, void, v_int64x2, v_int32x4);
#endif
#endif
#if CV_SIMD256
CV_DEF_REG_TRAITS(v256, v_uint8x32, uchar, u8, v_uint8x32, v_uint16x16, v_uint32x8, v_int8x32, void);
CV_DEF_REG_TRAITS(v256, v_int8x32, schar, s8, v_uint8x32, v_int16x16, v_int32x8, v_int8x32, void);
CV_DEF_REG_TRAITS(v256, v_uint16x16, ushort, u16, v_uint16x16, v_uint32x8, v_uint64x4, v_int16x16, void);
CV_DEF_REG_TRAITS(v256, v_int16x16, short, s16, v_uint16x16, v_int32x8, v_int64x4, v_int16x16, void);
CV_DEF_REG_TRAITS(v256, v_uint32x8, unsigned, u32, v_uint32x8, v_uint64x4, void, v_int32x8, void);
CV_DEF_REG_TRAITS(v256, v_int32x8, int, s32, v_uint32x8, v_int64x4, void, v_int32x8, void);
CV_DEF_REG_TRAITS(v256, v_float32x8, float, f32, v_float32x8, v_float64x4, void, v_int32x8, v_int32x8);
CV_DEF_REG_TRAITS(v256, v_uint64x4, uint64, u64, v_uint64x4, void, void, v_int64x4, void);
CV_DEF_REG_TRAITS(v256, v_int64x4, int64, s64, v_uint64x4, void, void, v_int64x4, void);
CV_DEF_REG_TRAITS(v256, v_float64x4, double, f64, v_float64x4, void, void, v_int64x4, v_int32x8);
#endif
#if CV_SIMD512
CV_DEF_REG_TRAITS(v512, v_uint8x64, uchar, u8, v_uint8x64, v_uint16x32, v_uint32x16, v_int8x64, void);
CV_DEF_REG_TRAITS(v512, v_int8x64, schar, s8, v_uint8x64, v_int16x32, v_int32x16, v_int8x64, void);
CV_DEF_REG_TRAITS(v512, v_uint16x32, ushort, u16, v_uint16x32, v_uint32x16, v_uint64x8, v_int16x32, void);
CV_DEF_REG_TRAITS(v512, v_int16x32, short, s16, v_uint16x32, v_int32x16, v_int64x8, v_int16x32, void);
CV_DEF_REG_TRAITS(v512, v_uint32x16, unsigned, u32, v_uint32x16, v_uint64x8, void, v_int32x16, void);
CV_DEF_REG_TRAITS(v512, v_int32x16, int, s32, v_uint32x16, v_int64x8, void, v_int32x16, void);
CV_DEF_REG_TRAITS(v512, v_float32x16, float, f32, v_float32x16, v_float64x8, void, v_int32x16, v_int32x16);
CV_DEF_REG_TRAITS(v512, v_uint64x8, uint64, u64, v_uint64x8, void, void, v_int64x8, void);
CV_DEF_REG_TRAITS(v512, v_int64x8, int64, s64, v_uint64x8, void, void, v_int64x8, void);
CV_DEF_REG_TRAITS(v512, v_float64x8, double, f64, v_float64x8, void, void, v_int64x8, v_int32x16);
#endif
//! @endcond
#if CV_SIMD512 && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 512)
#define CV__SIMD_NAMESPACE simd512
namespace CV__SIMD_NAMESPACE {
#define CV_SIMD 1
#define CV_SIMD_64F CV_SIMD512_64F
#define CV_SIMD_FP16 CV_SIMD512_FP16
#define CV_SIMD_WIDTH 64
//! @addtogroup core_hal_intrin
//! @{
//! @brief Maximum available vector register capacity 8-bit unsigned integer values
typedef v_uint8x64 v_uint8;
//! @brief Maximum available vector register capacity 8-bit signed integer values
typedef v_int8x64 v_int8;
//! @brief Maximum available vector register capacity 16-bit unsigned integer values
typedef v_uint16x32 v_uint16;
//! @brief Maximum available vector register capacity 16-bit signed integer values
typedef v_int16x32 v_int16;
//! @brief Maximum available vector register capacity 32-bit unsigned integer values
typedef v_uint32x16 v_uint32;
//! @brief Maximum available vector register capacity 32-bit signed integer values
typedef v_int32x16 v_int32;
//! @brief Maximum available vector register capacity 64-bit unsigned integer values
typedef v_uint64x8 v_uint64;
//! @brief Maximum available vector register capacity 64-bit signed integer values
typedef v_int64x8 v_int64;
//! @brief Maximum available vector register capacity 32-bit floating point values (single precision)
typedef v_float32x16 v_float32;
#if CV_SIMD512_64F
//! @brief Maximum available vector register capacity 64-bit floating point values (double precision)
typedef v_float64x8 v_float64;
#endif
//! @}
#define VXPREFIX(func) v512##func
} // namespace
using namespace CV__SIMD_NAMESPACE;
#elif CV_SIMD256 && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 256)
#define CV__SIMD_NAMESPACE simd256
namespace CV__SIMD_NAMESPACE {
#define CV_SIMD 1
#define CV_SIMD_64F CV_SIMD256_64F
#define CV_SIMD_FP16 CV_SIMD256_FP16
#define CV_SIMD_WIDTH 32
//! @addtogroup core_hal_intrin
//! @{
//! @brief Maximum available vector register capacity 8-bit unsigned integer values
typedef v_uint8x32 v_uint8;
//! @brief Maximum available vector register capacity 8-bit signed integer values
typedef v_int8x32 v_int8;
//! @brief Maximum available vector register capacity 16-bit unsigned integer values
typedef v_uint16x16 v_uint16;
//! @brief Maximum available vector register capacity 16-bit signed integer values
typedef v_int16x16 v_int16;
//! @brief Maximum available vector register capacity 32-bit unsigned integer values
typedef v_uint32x8 v_uint32;
//! @brief Maximum available vector register capacity 32-bit signed integer values
typedef v_int32x8 v_int32;
//! @brief Maximum available vector register capacity 64-bit unsigned integer values
typedef v_uint64x4 v_uint64;
//! @brief Maximum available vector register capacity 64-bit signed integer values
typedef v_int64x4 v_int64;
//! @brief Maximum available vector register capacity 32-bit floating point values (single precision)
typedef v_float32x8 v_float32;
#if CV_SIMD256_64F
//! @brief Maximum available vector register capacity 64-bit floating point values (double precision)
typedef v_float64x4 v_float64;
#endif
//! @}
#define VXPREFIX(func) v256##func
} // namespace
using namespace CV__SIMD_NAMESPACE;
#elif (CV_SIMD128 || CV_SIMD128_CPP) && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 128)
#if defined CV_SIMD128_CPP
#define CV__SIMD_NAMESPACE simd128_cpp
#else
#define CV__SIMD_NAMESPACE simd128
#endif
namespace CV__SIMD_NAMESPACE {
#define CV_SIMD CV_SIMD128
#define CV_SIMD_64F CV_SIMD128_64F
#define CV_SIMD_WIDTH 16
//! @addtogroup core_hal_intrin
//! @{
//! @brief Maximum available vector register capacity 8-bit unsigned integer values
typedef v_uint8x16 v_uint8;
//! @brief Maximum available vector register capacity 8-bit signed integer values
typedef v_int8x16 v_int8;
//! @brief Maximum available vector register capacity 16-bit unsigned integer values
typedef v_uint16x8 v_uint16;
//! @brief Maximum available vector register capacity 16-bit signed integer values
typedef v_int16x8 v_int16;
//! @brief Maximum available vector register capacity 32-bit unsigned integer values
typedef v_uint32x4 v_uint32;
//! @brief Maximum available vector register capacity 32-bit signed integer values
typedef v_int32x4 v_int32;
//! @brief Maximum available vector register capacity 64-bit unsigned integer values
typedef v_uint64x2 v_uint64;
//! @brief Maximum available vector register capacity 64-bit signed integer values
typedef v_int64x2 v_int64;
//! @brief Maximum available vector register capacity 32-bit floating point values (single precision)
typedef v_float32x4 v_float32;
#if CV_SIMD128_64F
//! @brief Maximum available vector register capacity 64-bit floating point values (double precision)
typedef v_float64x2 v_float64;
#endif
//! @}
#define VXPREFIX(func) v##func
} // namespace
using namespace CV__SIMD_NAMESPACE;
#endif
namespace CV__SIMD_NAMESPACE {
//! @addtogroup core_hal_intrin
//! @{
//! @name Wide init with value
//! @{
//! @brief Create maximum available capacity vector with elements set to a specific value
inline v_uint8 vx_setall_u8(uchar v) { return VXPREFIX(_setall_u8)(v); }
inline v_int8 vx_setall_s8(schar v) { return VXPREFIX(_setall_s8)(v); }
inline v_uint16 vx_setall_u16(ushort v) { return VXPREFIX(_setall_u16)(v); }
inline v_int16 vx_setall_s16(short v) { return VXPREFIX(_setall_s16)(v); }
inline v_int32 vx_setall_s32(int v) { return VXPREFIX(_setall_s32)(v); }
inline v_uint32 vx_setall_u32(unsigned v) { return VXPREFIX(_setall_u32)(v); }
inline v_float32 vx_setall_f32(float v) { return VXPREFIX(_setall_f32)(v); }
inline v_int64 vx_setall_s64(int64 v) { return VXPREFIX(_setall_s64)(v); }
inline v_uint64 vx_setall_u64(uint64 v) { return VXPREFIX(_setall_u64)(v); }
#if CV_SIMD_64F
inline v_float64 vx_setall_f64(double v) { return VXPREFIX(_setall_f64)(v); }
#endif
//! @}
//! @name Wide init with zero
//! @{
//! @brief Create maximum available capacity vector with elements set to zero
inline v_uint8 vx_setzero_u8() { return VXPREFIX(_setzero_u8)(); }
inline v_int8 vx_setzero_s8() { return VXPREFIX(_setzero_s8)(); }
inline v_uint16 vx_setzero_u16() { return VXPREFIX(_setzero_u16)(); }
inline v_int16 vx_setzero_s16() { return VXPREFIX(_setzero_s16)(); }
inline v_int32 vx_setzero_s32() { return VXPREFIX(_setzero_s32)(); }
inline v_uint32 vx_setzero_u32() { return VXPREFIX(_setzero_u32)(); }
inline v_float32 vx_setzero_f32() { return VXPREFIX(_setzero_f32)(); }
inline v_int64 vx_setzero_s64() { return VXPREFIX(_setzero_s64)(); }
inline v_uint64 vx_setzero_u64() { return VXPREFIX(_setzero_u64)(); }
#if CV_SIMD_64F
inline v_float64 vx_setzero_f64() { return VXPREFIX(_setzero_f64)(); }
#endif
//! @}
//! @name Wide load from memory
//! @{
//! @brief Load maximum available capacity register contents from memory
inline v_uint8 vx_load(const uchar * ptr) { return VXPREFIX(_load)(ptr); }
inline v_int8 vx_load(const schar * ptr) { return VXPREFIX(_load)(ptr); }
inline v_uint16 vx_load(const ushort * ptr) { return VXPREFIX(_load)(ptr); }
inline v_int16 vx_load(const short * ptr) { return VXPREFIX(_load)(ptr); }
inline v_int32 vx_load(const int * ptr) { return VXPREFIX(_load)(ptr); }
inline v_uint32 vx_load(const unsigned * ptr) { return VXPREFIX(_load)(ptr); }
inline v_float32 vx_load(const float * ptr) { return VXPREFIX(_load)(ptr); }
inline v_int64 vx_load(const int64 * ptr) { return VXPREFIX(_load)(ptr); }
inline v_uint64 vx_load(const uint64 * ptr) { return VXPREFIX(_load)(ptr); }
#if CV_SIMD_64F
inline v_float64 vx_load(const double * ptr) { return VXPREFIX(_load)(ptr); }
#endif
//! @}
//! @name Wide load from memory(aligned)
//! @{
//! @brief Load maximum available capacity register contents from memory(aligned)
inline v_uint8 vx_load_aligned(const uchar * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_int8 vx_load_aligned(const schar * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_uint16 vx_load_aligned(const ushort * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_int16 vx_load_aligned(const short * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_int32 vx_load_aligned(const int * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_uint32 vx_load_aligned(const unsigned * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_float32 vx_load_aligned(const float * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_int64 vx_load_aligned(const int64 * ptr) { return VXPREFIX(_load_aligned)(ptr); }
inline v_uint64 vx_load_aligned(const uint64 * ptr) { return VXPREFIX(_load_aligned)(ptr); }
#if CV_SIMD_64F
inline v_float64 vx_load_aligned(const double * ptr) { return VXPREFIX(_load_aligned)(ptr); }
#endif
//! @}
//! @name Wide load lower half from memory
//! @{
//! @brief Load lower half of maximum available capacity register from memory
inline v_uint8 vx_load_low(const uchar * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_int8 vx_load_low(const schar * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_uint16 vx_load_low(const ushort * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_int16 vx_load_low(const short * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_int32 vx_load_low(const int * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_uint32 vx_load_low(const unsigned * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_float32 vx_load_low(const float * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_int64 vx_load_low(const int64 * ptr) { return VXPREFIX(_load_low)(ptr); }
inline v_uint64 vx_load_low(const uint64 * ptr) { return VXPREFIX(_load_low)(ptr); }
#if CV_SIMD_64F
inline v_float64 vx_load_low(const double * ptr) { return VXPREFIX(_load_low)(ptr); }
#endif
//! @}
//! @name Wide load halfs from memory
//! @{
//! @brief Load maximum available capacity register contents from two memory blocks
inline v_uint8 vx_load_halves(const uchar * ptr0, const uchar * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_int8 vx_load_halves(const schar * ptr0, const schar * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_uint16 vx_load_halves(const ushort * ptr0, const ushort * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_int16 vx_load_halves(const short * ptr0, const short * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_int32 vx_load_halves(const int * ptr0, const int * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_uint32 vx_load_halves(const unsigned * ptr0, const unsigned * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_float32 vx_load_halves(const float * ptr0, const float * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_int64 vx_load_halves(const int64 * ptr0, const int64 * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
inline v_uint64 vx_load_halves(const uint64 * ptr0, const uint64 * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
#if CV_SIMD_64F
inline v_float64 vx_load_halves(const double * ptr0, const double * ptr1) { return VXPREFIX(_load_halves)(ptr0, ptr1); }
#endif
//! @}
//! @name Wide LUT of elements
//! @{
//! @brief Load maximum available capacity register contents with array elements by provided indexes
inline v_uint8 vx_lut(const uchar * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_int8 vx_lut(const schar * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_uint16 vx_lut(const ushort * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_int16 vx_lut(const short* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_int32 vx_lut(const int* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_uint32 vx_lut(const unsigned* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_float32 vx_lut(const float* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_int64 vx_lut(const int64 * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
inline v_uint64 vx_lut(const uint64 * ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
#if CV_SIMD_64F
inline v_float64 vx_lut(const double* ptr, const int* idx) { return VXPREFIX(_lut)(ptr, idx); }
#endif
//! @}
//! @name Wide LUT of element pairs
//! @{
//! @brief Load maximum available capacity register contents with array element pairs by provided indexes
inline v_uint8 vx_lut_pairs(const uchar * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_int8 vx_lut_pairs(const schar * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_uint16 vx_lut_pairs(const ushort * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_int16 vx_lut_pairs(const short* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_int32 vx_lut_pairs(const int* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_uint32 vx_lut_pairs(const unsigned* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_float32 vx_lut_pairs(const float* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_int64 vx_lut_pairs(const int64 * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
inline v_uint64 vx_lut_pairs(const uint64 * ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
#if CV_SIMD_64F
inline v_float64 vx_lut_pairs(const double* ptr, const int* idx) { return VXPREFIX(_lut_pairs)(ptr, idx); }
#endif
//! @}
//! @name Wide LUT of element quads
//! @{
//! @brief Load maximum available capacity register contents with array element quads by provided indexes
inline v_uint8 vx_lut_quads(const uchar* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
inline v_int8 vx_lut_quads(const schar* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
inline v_uint16 vx_lut_quads(const ushort* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
inline v_int16 vx_lut_quads(const short* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
inline v_int32 vx_lut_quads(const int* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
inline v_uint32 vx_lut_quads(const unsigned* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
inline v_float32 vx_lut_quads(const float* ptr, const int* idx) { return VXPREFIX(_lut_quads)(ptr, idx); }
//! @}
//! @name Wide load with double expansion
//! @{
//! @brief Load maximum available capacity register contents from memory with double expand
inline v_uint16 vx_load_expand(const uchar * ptr) { return VXPREFIX(_load_expand)(ptr); }
inline v_int16 vx_load_expand(const schar * ptr) { return VXPREFIX(_load_expand)(ptr); }
inline v_uint32 vx_load_expand(const ushort * ptr) { return VXPREFIX(_load_expand)(ptr); }
inline v_int32 vx_load_expand(const short* ptr) { return VXPREFIX(_load_expand)(ptr); }
inline v_int64 vx_load_expand(const int* ptr) { return VXPREFIX(_load_expand)(ptr); }
inline v_uint64 vx_load_expand(const unsigned* ptr) { return VXPREFIX(_load_expand)(ptr); }
inline v_float32 vx_load_expand(const float16_t * ptr) { return VXPREFIX(_load_expand)(ptr); }
//! @}
//! @name Wide load with quad expansion
//! @{
//! @brief Load maximum available capacity register contents from memory with quad expand
inline v_uint32 vx_load_expand_q(const uchar * ptr) { return VXPREFIX(_load_expand_q)(ptr); }
inline v_int32 vx_load_expand_q(const schar * ptr) { return VXPREFIX(_load_expand_q)(ptr); }
//! @}
/** @brief SIMD processing state cleanup call */
inline void vx_cleanup() { VXPREFIX(_cleanup)(); }
//! @cond IGNORED
// backward compatibility
template<typename _Tp, typename _Tvec> static inline
void vx_store(_Tp* dst, const _Tvec& v) { return v_store(dst, v); }
// backward compatibility
template<typename _Tp, typename _Tvec> static inline
void vx_store_aligned(_Tp* dst, const _Tvec& v) { return v_store_aligned(dst, v); }
//! @endcond
//! @}
#undef VXPREFIX
} // namespace
//! @cond IGNORED
#ifndef CV_SIMD_64F
#define CV_SIMD_64F 0
#endif
#ifndef CV_SIMD_FP16
#define CV_SIMD_FP16 0 //!< Defined to 1 on native support of operations with float16x8_t / float16x16_t (SIMD256) types
#endif
#ifndef CV_SIMD
#define CV_SIMD 0
#endif
#include "simd_utils.impl.hpp"
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
#endif
} // cv::
//! @endcond
#endif