PF Luo
Committed by GitHub

share GetHypsRowSplits interface and fix getting Topk not taking logprob (#131)

@@ -66,4 +66,19 @@ std::vector<Hypothesis> Hypotheses::GetTopK(int32_t k, bool length_norm) const { @@ -66,4 +66,19 @@ std::vector<Hypothesis> Hypotheses::GetTopK(int32_t k, bool length_norm) const {
66 return {all_hyps.begin(), all_hyps.begin() + k}; 66 return {all_hyps.begin(), all_hyps.begin() + k};
67 } 67 }
68 68
  69 +const std::vector<int32_t> GetHypsRowSplits(
  70 + const std::vector<Hypotheses> &hyps) {
  71 + std::vector<int32_t> row_splits;
  72 + row_splits.reserve(hyps.size() + 1);
  73 +
  74 + row_splits.push_back(0);
  75 + int32_t s = 0;
  76 + for (const auto &h : hyps) {
  77 + s += h.Size();
  78 + row_splits.push_back(s);
  79 + }
  80 +
  81 + return row_splits;
  82 +}
  83 +
69 } // namespace sherpa_onnx 84 } // namespace sherpa_onnx
@@ -121,6 +121,9 @@ class Hypotheses { @@ -121,6 +121,9 @@ class Hypotheses {
121 Map hyps_dict_; 121 Map hyps_dict_;
122 }; 122 };
123 123
  124 +const std::vector<int32_t> GetHypsRowSplits(
  125 + const std::vector<Hypotheses> &hyps);
  126 +
124 } // namespace sherpa_onnx 127 } // namespace sherpa_onnx
125 128
126 #endif // SHERPA_ONNX_CSRC_HYPOTHESIS_H_ 129 #endif // SHERPA_ONNX_CSRC_HYPOTHESIS_H_
@@ -15,21 +15,6 @@ @@ -15,21 +15,6 @@
15 15
16 namespace sherpa_onnx { 16 namespace sherpa_onnx {
17 17
18 -static std::vector<int32_t> GetHypsRowSplits(  
19 - const std::vector<Hypotheses> &hyps) {  
20 - std::vector<int32_t> row_splits;  
21 - row_splits.reserve(hyps.size() + 1);  
22 -  
23 - row_splits.push_back(0);  
24 - int32_t s = 0;  
25 - for (const auto &h : hyps) {  
26 - s += h.Size();  
27 - row_splits.push_back(s);  
28 - }  
29 -  
30 - return row_splits;  
31 -}  
32 -  
33 std::vector<OfflineTransducerDecoderResult> 18 std::vector<OfflineTransducerDecoderResult>
34 OfflineTransducerModifiedBeamSearchDecoder::Decode( 19 OfflineTransducerModifiedBeamSearchDecoder::Decode(
35 Ort::Value encoder_out, Ort::Value encoder_out_length) { 20 Ort::Value encoder_out, Ort::Value encoder_out_length) {
@@ -14,7 +14,7 @@ @@ -14,7 +14,7 @@
14 namespace sherpa_onnx { 14 namespace sherpa_onnx {
15 15
16 static void UseCachedDecoderOut( 16 static void UseCachedDecoderOut(
17 - const std::vector<int32_t> &hyps_num_split, 17 + const std::vector<int32_t> &hyps_row_splits,
18 const std::vector<OnlineTransducerDecoderResult> &results, 18 const std::vector<OnlineTransducerDecoderResult> &results,
19 int32_t context_size, Ort::Value *decoder_out) { 19 int32_t context_size, Ort::Value *decoder_out) {
20 std::vector<int64_t> shape = 20 std::vector<int64_t> shape =
@@ -24,7 +24,7 @@ static void UseCachedDecoderOut( @@ -24,7 +24,7 @@ static void UseCachedDecoderOut(
24 24
25 int32_t batch_size = static_cast<int32_t>(results.size()); 25 int32_t batch_size = static_cast<int32_t>(results.size());
26 for (int32_t i = 0; i != batch_size; ++i) { 26 for (int32_t i = 0; i != batch_size; ++i) {
27 - int32_t num_hyps = hyps_num_split[i + 1] - hyps_num_split[i]; 27 + int32_t num_hyps = hyps_row_splits[i + 1] - hyps_row_splits[i];
28 if (num_hyps > 1 || !results[i].decoder_out) { 28 if (num_hyps > 1 || !results[i].decoder_out) {
29 dst += num_hyps * shape[1]; 29 dst += num_hyps * shape[1];
30 continue; 30 continue;
@@ -86,17 +86,14 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode( @@ -86,17 +86,14 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode(
86 for (int32_t t = 0; t != num_frames; ++t) { 86 for (int32_t t = 0; t != num_frames; ++t) {
87 // Due to merging paths with identical token sequences, 87 // Due to merging paths with identical token sequences,
88 // not all utterances have "num_active_paths" paths. 88 // not all utterances have "num_active_paths" paths.
89 - int32_t hyps_num_acc = 0;  
90 - std::vector<int32_t> hyps_num_split;  
91 - hyps_num_split.push_back(0);  
92 - 89 + auto hyps_row_splits = GetHypsRowSplits(cur);
  90 + int32_t num_hyps =
  91 + hyps_row_splits.back(); // total num hyps for all utterance
93 prev.clear(); 92 prev.clear();
94 for (auto &hyps : cur) { 93 for (auto &hyps : cur) {
95 for (auto &h : hyps) { 94 for (auto &h : hyps) {
96 prev.push_back(std::move(h.second)); 95 prev.push_back(std::move(h.second));
97 - hyps_num_acc++;  
98 } 96 }
99 - hyps_num_split.push_back(hyps_num_acc);  
100 } 97 }
101 cur.clear(); 98 cur.clear();
102 cur.reserve(batch_size); 99 cur.reserve(batch_size);
@@ -104,30 +101,44 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode( @@ -104,30 +101,44 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode(
104 Ort::Value decoder_input = model_->BuildDecoderInput(prev); 101 Ort::Value decoder_input = model_->BuildDecoderInput(prev);
105 Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input)); 102 Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
106 if (t == 0) { 103 if (t == 0) {
107 - UseCachedDecoderOut(hyps_num_split, *result, model_->ContextSize(), 104 + UseCachedDecoderOut(hyps_row_splits, *result, model_->ContextSize(),
108 &decoder_out); 105 &decoder_out);
109 } 106 }
110 107
111 Ort::Value cur_encoder_out = 108 Ort::Value cur_encoder_out =
112 GetEncoderOutFrame(model_->Allocator(), &encoder_out, t); 109 GetEncoderOutFrame(model_->Allocator(), &encoder_out, t);
113 cur_encoder_out = 110 cur_encoder_out =
114 - Repeat(model_->Allocator(), &cur_encoder_out, hyps_num_split); 111 + Repeat(model_->Allocator(), &cur_encoder_out, hyps_row_splits);
115 Ort::Value logit = model_->RunJoiner( 112 Ort::Value logit = model_->RunJoiner(
116 std::move(cur_encoder_out), Clone(model_->Allocator(), &decoder_out)); 113 std::move(cur_encoder_out), Clone(model_->Allocator(), &decoder_out));
  114 +
117 float *p_logit = logit.GetTensorMutableData<float>(); 115 float *p_logit = logit.GetTensorMutableData<float>();
  116 + LogSoftmax(p_logit, vocab_size, num_hyps);
  117 +
  118 + // now p_logit contains log_softmax output, we rename it to p_logprob
  119 + // to match what it actually contains
  120 + float *p_logprob = p_logit;
  121 +
  122 + // add log_prob of each hypothesis to p_logprob before taking top_k
  123 + for (int32_t i = 0; i != num_hyps; ++i) {
  124 + float log_prob = prev[i].log_prob;
  125 + for (int32_t k = 0; k != vocab_size; ++k, ++p_logprob) {
  126 + *p_logprob += log_prob;
  127 + }
  128 + }
  129 + p_logprob = p_logit; // we changed p_logprob in the above for loop
118 130
119 - for (int32_t b = 0; b < batch_size; ++b) { 131 + for (int32_t b = 0; b != batch_size; ++b) {
120 int32_t frame_offset = (*result)[b].frame_offset; 132 int32_t frame_offset = (*result)[b].frame_offset;
121 - int32_t start = hyps_num_split[b];  
122 - int32_t end = hyps_num_split[b + 1];  
123 - LogSoftmax(p_logit, vocab_size, (end - start)); 133 + int32_t start = hyps_row_splits[b];
  134 + int32_t end = hyps_row_splits[b + 1];
124 auto topk = 135 auto topk =
125 - TopkIndex(p_logit, vocab_size * (end - start), max_active_paths_); 136 + TopkIndex(p_logprob, vocab_size * (end - start), max_active_paths_);
126 137
127 Hypotheses hyps; 138 Hypotheses hyps;
128 - for (auto i : topk) {  
129 - int32_t hyp_index = i / vocab_size + start;  
130 - int32_t new_token = i % vocab_size; 139 + for (auto k : topk) {
  140 + int32_t hyp_index = k / vocab_size + start;
  141 + int32_t new_token = k % vocab_size;
131 142
132 Hypothesis new_hyp = prev[hyp_index]; 143 Hypothesis new_hyp = prev[hyp_index];
133 if (new_token != 0) { 144 if (new_token != 0) {
@@ -137,12 +148,12 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode( @@ -137,12 +148,12 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode(
137 } else { 148 } else {
138 ++new_hyp.num_trailing_blanks; 149 ++new_hyp.num_trailing_blanks;
139 } 150 }
140 - new_hyp.log_prob += p_logit[i]; 151 + new_hyp.log_prob = p_logprob[k];
141 hyps.Add(std::move(new_hyp)); 152 hyps.Add(std::move(new_hyp));
142 - } 153 + } // for (auto k : topk)
143 cur.push_back(std::move(hyps)); 154 cur.push_back(std::move(hyps));
144 - p_logit += vocab_size * (end - start);  
145 - } 155 + p_logprob += (end - start) * vocab_size;
  156 + } // for (int32_t b = 0; b != batch_size; ++b)
146 } 157 }
147 158
148 for (int32_t b = 0; b != batch_size; ++b) { 159 for (int32_t b = 0; b != batch_size; ++b) {