PF Luo
Committed by GitHub

share GetHypsRowSplits interface and fix getting Topk not taking logprob (#131)

... ... @@ -66,4 +66,19 @@ std::vector<Hypothesis> Hypotheses::GetTopK(int32_t k, bool length_norm) const {
return {all_hyps.begin(), all_hyps.begin() + k};
}
const std::vector<int32_t> GetHypsRowSplits(
const std::vector<Hypotheses> &hyps) {
std::vector<int32_t> row_splits;
row_splits.reserve(hyps.size() + 1);
row_splits.push_back(0);
int32_t s = 0;
for (const auto &h : hyps) {
s += h.Size();
row_splits.push_back(s);
}
return row_splits;
}
} // namespace sherpa_onnx
... ...
... ... @@ -121,6 +121,9 @@ class Hypotheses {
Map hyps_dict_;
};
const std::vector<int32_t> GetHypsRowSplits(
const std::vector<Hypotheses> &hyps);
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_HYPOTHESIS_H_
... ...
... ... @@ -15,21 +15,6 @@
namespace sherpa_onnx {
static std::vector<int32_t> GetHypsRowSplits(
const std::vector<Hypotheses> &hyps) {
std::vector<int32_t> row_splits;
row_splits.reserve(hyps.size() + 1);
row_splits.push_back(0);
int32_t s = 0;
for (const auto &h : hyps) {
s += h.Size();
row_splits.push_back(s);
}
return row_splits;
}
std::vector<OfflineTransducerDecoderResult>
OfflineTransducerModifiedBeamSearchDecoder::Decode(
Ort::Value encoder_out, Ort::Value encoder_out_length) {
... ...
... ... @@ -14,7 +14,7 @@
namespace sherpa_onnx {
static void UseCachedDecoderOut(
const std::vector<int32_t> &hyps_num_split,
const std::vector<int32_t> &hyps_row_splits,
const std::vector<OnlineTransducerDecoderResult> &results,
int32_t context_size, Ort::Value *decoder_out) {
std::vector<int64_t> shape =
... ... @@ -24,7 +24,7 @@ static void UseCachedDecoderOut(
int32_t batch_size = static_cast<int32_t>(results.size());
for (int32_t i = 0; i != batch_size; ++i) {
int32_t num_hyps = hyps_num_split[i + 1] - hyps_num_split[i];
int32_t num_hyps = hyps_row_splits[i + 1] - hyps_row_splits[i];
if (num_hyps > 1 || !results[i].decoder_out) {
dst += num_hyps * shape[1];
continue;
... ... @@ -86,17 +86,14 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode(
for (int32_t t = 0; t != num_frames; ++t) {
// Due to merging paths with identical token sequences,
// not all utterances have "num_active_paths" paths.
int32_t hyps_num_acc = 0;
std::vector<int32_t> hyps_num_split;
hyps_num_split.push_back(0);
auto hyps_row_splits = GetHypsRowSplits(cur);
int32_t num_hyps =
hyps_row_splits.back(); // total num hyps for all utterance
prev.clear();
for (auto &hyps : cur) {
for (auto &h : hyps) {
prev.push_back(std::move(h.second));
hyps_num_acc++;
}
hyps_num_split.push_back(hyps_num_acc);
}
cur.clear();
cur.reserve(batch_size);
... ... @@ -104,30 +101,44 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode(
Ort::Value decoder_input = model_->BuildDecoderInput(prev);
Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
if (t == 0) {
UseCachedDecoderOut(hyps_num_split, *result, model_->ContextSize(),
UseCachedDecoderOut(hyps_row_splits, *result, model_->ContextSize(),
&decoder_out);
}
Ort::Value cur_encoder_out =
GetEncoderOutFrame(model_->Allocator(), &encoder_out, t);
cur_encoder_out =
Repeat(model_->Allocator(), &cur_encoder_out, hyps_num_split);
Repeat(model_->Allocator(), &cur_encoder_out, hyps_row_splits);
Ort::Value logit = model_->RunJoiner(
std::move(cur_encoder_out), Clone(model_->Allocator(), &decoder_out));
float *p_logit = logit.GetTensorMutableData<float>();
LogSoftmax(p_logit, vocab_size, num_hyps);
// now p_logit contains log_softmax output, we rename it to p_logprob
// to match what it actually contains
float *p_logprob = p_logit;
for (int32_t b = 0; b < batch_size; ++b) {
// add log_prob of each hypothesis to p_logprob before taking top_k
for (int32_t i = 0; i != num_hyps; ++i) {
float log_prob = prev[i].log_prob;
for (int32_t k = 0; k != vocab_size; ++k, ++p_logprob) {
*p_logprob += log_prob;
}
}
p_logprob = p_logit; // we changed p_logprob in the above for loop
for (int32_t b = 0; b != batch_size; ++b) {
int32_t frame_offset = (*result)[b].frame_offset;
int32_t start = hyps_num_split[b];
int32_t end = hyps_num_split[b + 1];
LogSoftmax(p_logit, vocab_size, (end - start));
int32_t start = hyps_row_splits[b];
int32_t end = hyps_row_splits[b + 1];
auto topk =
TopkIndex(p_logit, vocab_size * (end - start), max_active_paths_);
TopkIndex(p_logprob, vocab_size * (end - start), max_active_paths_);
Hypotheses hyps;
for (auto i : topk) {
int32_t hyp_index = i / vocab_size + start;
int32_t new_token = i % vocab_size;
for (auto k : topk) {
int32_t hyp_index = k / vocab_size + start;
int32_t new_token = k % vocab_size;
Hypothesis new_hyp = prev[hyp_index];
if (new_token != 0) {
... ... @@ -137,12 +148,12 @@ void OnlineTransducerModifiedBeamSearchDecoder::Decode(
} else {
++new_hyp.num_trailing_blanks;
}
new_hyp.log_prob += p_logit[i];
new_hyp.log_prob = p_logprob[k];
hyps.Add(std::move(new_hyp));
}
} // for (auto k : topk)
cur.push_back(std::move(hyps));
p_logit += vocab_size * (end - start);
}
p_logprob += (end - start) * vocab_size;
} // for (int32_t b = 0; b != batch_size; ++b)
}
for (int32_t b = 0; b != batch_size; ++b) {
... ...