Fangjun Kuang
Committed by GitHub

Export NeMo FastConformer Hybrid Transducer Large Streaming to ONNX (#844)

name: export-nemo-speaker-verification-to-onnx
name: export-nemo-fast-conformer-ctc-to-onnx
on:
workflow_dispatch:
... ...
name: export-nemo-fast-conformer-transducer-to-onnx
on:
workflow_dispatch:
concurrency:
group: export-nemo-fast-conformer-hybrid-transducer-to-onnx-${{ github.ref }}
cancel-in-progress: true
jobs:
export-nemo-fast-conformer-hybrid-transducer-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: NeMo transducer
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [macos-latest]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install NeMo
shell: bash
run: |
BRANCH='main'
pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]
pip install onnxruntime
pip install kaldi-native-fbank
pip install soundfile librosa
- name: Run
shell: bash
run: |
cd scripts/nemo/fast-conformer-hybrid-transducer-ctc
./run-transducer.sh
mv -v sherpa-onnx-nemo* ../../..
- name: Download test waves
shell: bash
run: |
mkdir test_wavs
pushd test_wavs
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/0.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/1.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/8k.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/trans.txt
popd
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-transducer-80ms
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-transducer-480ms
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-transducer-1040ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-transducer-80ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-transducer-80ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-transducer-480ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-transducer-480ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-transducer-1040ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-transducer-1040ms
- name: Release
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.tar.bz2
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: asr-models
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
from typing import Dict
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
from typing import Dict
import nemo.collections.asr as nemo_asr
import onnx
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
choices=["80", "480", "1040"],
)
return parser.parse_args()
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
@torch.no_grad()
def main():
args = get_args()
model_name = f"stt_en_fastconformer_hybrid_large_streaming_{args.model}ms"
asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name=model_name)
with open("./tokens.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(asr_model.joint.vocabulary):
f.write(f"{s} {i}\n")
f.write(f"<blk> {i+1}\n")
print("Saved to tokens.txt")
decoder_type = "rnnt"
asr_model.change_decoding_strategy(decoder_type=decoder_type)
asr_model.eval()
assert asr_model.encoder.streaming_cfg is not None
if isinstance(asr_model.encoder.streaming_cfg.chunk_size, list):
chunk_size = asr_model.encoder.streaming_cfg.chunk_size[1]
else:
chunk_size = asr_model.encoder.streaming_cfg.chunk_size
if isinstance(asr_model.encoder.streaming_cfg.pre_encode_cache_size, list):
pre_encode_cache_size = asr_model.encoder.streaming_cfg.pre_encode_cache_size[1]
else:
pre_encode_cache_size = asr_model.encoder.streaming_cfg.pre_encode_cache_size
window_size = chunk_size + pre_encode_cache_size
print("chunk_size", chunk_size)
print("pre_encode_cache_size", pre_encode_cache_size)
print("window_size", window_size)
chunk_shift = chunk_size
# cache_last_channel: (batch_size, dim1, dim2, dim3)
cache_last_channel_dim1 = len(asr_model.encoder.layers)
cache_last_channel_dim2 = asr_model.encoder.streaming_cfg.last_channel_cache_size
cache_last_channel_dim3 = asr_model.encoder.d_model
# cache_last_time: (batch_size, dim1, dim2, dim3)
cache_last_time_dim1 = len(asr_model.encoder.layers)
cache_last_time_dim2 = asr_model.encoder.d_model
cache_last_time_dim3 = asr_model.encoder.conv_context_size[0]
asr_model.set_export_config({"decoder_type": "rnnt", "cache_support": True})
# asr_model.export("model.onnx")
asr_model.encoder.export("encoder.onnx")
asr_model.decoder.export("decoder.onnx")
asr_model.joint.export("joiner.onnx")
# model.onnx is a suffix.
# It will generate two files:
# encoder-model.onnx
# decoder_joint-model.onnx
meta_data = {
"vocab_size": asr_model.decoder.vocab_size,
"window_size": window_size,
"chunk_shift": chunk_shift,
"normalize_type": "None",
"cache_last_channel_dim1": cache_last_channel_dim1,
"cache_last_channel_dim2": cache_last_channel_dim2,
"cache_last_channel_dim3": cache_last_channel_dim3,
"cache_last_time_dim1": cache_last_time_dim1,
"cache_last_time_dim2": cache_last_time_dim2,
"cache_last_time_dim3": cache_last_time_dim3,
"pred_rnn_layers": asr_model.decoder.pred_rnn_layers,
"pred_hidden": asr_model.decoder.pred_hidden,
"subsampling_factor": 8,
"model_type": "EncDecHybridRNNTCTCBPEModel",
"version": "1",
"model_author": "NeMo",
"url": f"https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/{model_name}",
"comment": "Only the transducer branch is exported",
}
add_meta_data("encoder.onnx", meta_data)
print(meta_data)
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env bash
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
set -ex
... ...
#!/usr/bin/env bash
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
set -ex
if [ ! -e ./0.wav ]; then
# curl -SL -O https://hf-mirror.com/csukuangfj/icefall-asr-librispeech-streaming-zipformer-small-2024-03-18/resolve/main/test_wavs/0.wav
curl -SL -O https://huggingface.co/csukuangfj/icefall-asr-librispeech-streaming-zipformer-small-2024-03-18/resolve/main/test_wavs/0.wav
fi
ms=(
80
480
1040
)
for m in ${ms[@]}; do
./export-onnx-transducer.py --model $m
d=sherpa-onnx-nemo-streaming-fast-conformer-transducer-${m}ms
if [ ! -f $d/encoder.onnx ]; then
mkdir -p $d
mv -v encoder.onnx $d/
mv -v decoder.onnx $d/
mv -v joiner.onnx $d/
mv -v tokens.txt $d/
ls -lh $d
fi
done
# Now test the exported models
for m in ${ms[@]}; do
d=sherpa-onnx-nemo-streaming-fast-conformer-transducer-${m}ms
python3 ./test-onnx-transducer.py \
--encoder $d/encoder.onnx \
--decoder $d/decoder.onnx \
--joiner $d/joiner.onnx \
--tokens $d/tokens.txt \
--wav ./0.wav
done
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import onnxruntime
def show(filename):
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
sess = onnxruntime.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
def main():
print("=========encoder==========")
show("./encoder.onnx")
print("=========decoder==========")
show("./decoder.onnx")
print("=========joiner==========")
show("./joiner.onnx")
if __name__ == "__main__":
main()
"""
=========encoder==========
NodeArg(name='audio_signal', type='tensor(float)', shape=['audio_signal_dynamic_axes_1', 80, 'audio_signal_dynamic_axes_2'])
NodeArg(name='length', type='tensor(int64)', shape=['length_dynamic_axes_1'])
NodeArg(name='cache_last_channel', type='tensor(float)', shape=['cache_last_channel_dynamic_axes_1', 17, 'cache_last_channel_dynamic_axes_2', 512])
NodeArg(name='cache_last_time', type='tensor(float)', shape=['cache_last_time_dynamic_axes_1', 17, 512, 'cache_last_time_dynamic_axes_2'])
NodeArg(name='cache_last_channel_len', type='tensor(int64)', shape=['cache_last_channel_len_dynamic_axes_1'])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 512, 'outputs_dynamic_axes_2'])
NodeArg(name='encoded_lengths', type='tensor(int64)', shape=['encoded_lengths_dynamic_axes_1'])
NodeArg(name='cache_last_channel_next', type='tensor(float)', shape=['cache_last_channel_next_dynamic_axes_1', 17, 'cache_last_channel_next_dynamic_axes_2', 512])
NodeArg(name='cache_last_time_next', type='tensor(float)', shape=['cache_last_time_next_dynamic_axes_1', 17, 512, 'cache_last_time_next_dynamic_axes_2'])
NodeArg(name='cache_last_channel_next_len', type='tensor(int64)', shape=['cache_last_channel_next_len_dynamic_axes_1'])
=========decoder==========
NodeArg(name='targets', type='tensor(int32)', shape=['targets_dynamic_axes_1', 'targets_dynamic_axes_2'])
NodeArg(name='target_length', type='tensor(int32)', shape=['target_length_dynamic_axes_1'])
NodeArg(name='states.1', type='tensor(float)', shape=[1, 'states.1_dim_1', 640])
NodeArg(name='onnx::LSTM_3', type='tensor(float)', shape=[1, 1, 640])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 640, 'outputs_dynamic_axes_2'])
NodeArg(name='prednet_lengths', type='tensor(int32)', shape=['prednet_lengths_dynamic_axes_1'])
NodeArg(name='states', type='tensor(float)', shape=[1, 'states_dynamic_axes_1', 640])
NodeArg(name='74', type='tensor(float)', shape=[1, 'LSTM74_dim_1', 640])
=========joiner==========
NodeArg(name='encoder_outputs', type='tensor(float)', shape=['encoder_outputs_dynamic_axes_1', 512, 'encoder_outputs_dynamic_axes_2'])
NodeArg(name='decoder_outputs', type='tensor(float)', shape=['decoder_outputs_dynamic_axes_1', 640, 'decoder_outputs_dynamic_axes_2'])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 'outputs_dynamic_axes_2', 'outputs_dynamic_axes_3', 1025])
"""
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
from pathlib import Path
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
from pathlib import Path
import kaldi_native_fbank as knf
import librosa
import numpy as np
import onnxruntime as ort
import soundfile as sf
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--encoder", type=str, required=True, help="Path to encoder.onnx"
)
parser.add_argument(
"--decoder", type=str, required=True, help="Path to decoder.onnx"
)
parser.add_argument("--joiner", type=str, required=True, help="Path to joiner.onnx")
parser.add_argument("--tokens", type=str, required=True, help="Path to tokens.txt")
parser.add_argument("--wav", type=str, required=True, help="Path to test.wav")
return parser.parse_args()
def create_fbank():
opts = knf.FbankOptions()
opts.frame_opts.dither = 0
opts.frame_opts.remove_dc_offset = False
opts.frame_opts.window_type = "hann"
opts.mel_opts.low_freq = 0
opts.mel_opts.num_bins = 80
opts.mel_opts.is_librosa = True
fbank = knf.OnlineFbank(opts)
return fbank
def compute_features(audio, fbank):
assert len(audio.shape) == 1, audio.shape
fbank.accept_waveform(16000, audio)
ans = []
processed = 0
while processed < fbank.num_frames_ready:
ans.append(np.array(fbank.get_frame(processed)))
processed += 1
ans = np.stack(ans)
return ans
class OnnxModel:
def __init__(
self,
encoder: str,
decoder: str,
joiner: str,
):
self.init_encoder(encoder)
self.init_decoder(decoder)
self.init_joiner(joiner)
def init_encoder(self, encoder):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.encoder = ort.InferenceSession(
encoder,
sess_options=session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.encoder.get_modelmeta().custom_metadata_map
print(meta)
self.window_size = int(meta["window_size"])
self.chunk_shift = int(meta["chunk_shift"])
self.cache_last_channel_dim1 = int(meta["cache_last_channel_dim1"])
self.cache_last_channel_dim2 = int(meta["cache_last_channel_dim2"])
self.cache_last_channel_dim3 = int(meta["cache_last_channel_dim3"])
self.cache_last_time_dim1 = int(meta["cache_last_time_dim1"])
self.cache_last_time_dim2 = int(meta["cache_last_time_dim2"])
self.cache_last_time_dim3 = int(meta["cache_last_time_dim3"])
self.pred_rnn_layers = int(meta["pred_rnn_layers"])
self.pred_hidden = int(meta["pred_hidden"])
self.init_cache_state()
def init_decoder(self, decoder):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.decoder = ort.InferenceSession(
decoder,
sess_options=session_opts,
providers=["CPUExecutionProvider"],
)
def init_joiner(self, joiner):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.joiner = ort.InferenceSession(
joiner,
sess_options=session_opts,
providers=["CPUExecutionProvider"],
)
def get_decoder_state(self):
batch_size = 1
state0 = torch.zeros(self.pred_rnn_layers, batch_size, self.pred_hidden).numpy()
state1 = torch.zeros(self.pred_rnn_layers, batch_size, self.pred_hidden).numpy()
return state0, state1
def init_cache_state(self):
self.cache_last_channel = torch.zeros(
1,
self.cache_last_channel_dim1,
self.cache_last_channel_dim2,
self.cache_last_channel_dim3,
dtype=torch.float32,
).numpy()
self.cache_last_time = torch.zeros(
1,
self.cache_last_time_dim1,
self.cache_last_time_dim2,
self.cache_last_time_dim3,
dtype=torch.float32,
).numpy()
self.cache_last_channel_len = torch.ones([1], dtype=torch.int64).numpy()
def run_encoder(self, x: np.ndarray):
# x: (T, C)
x = torch.from_numpy(x)
x = x.t().unsqueeze(0)
# x: [1, C, T]
x_lens = torch.tensor([x.shape[-1]], dtype=torch.int64)
(
encoder_out,
out_len,
cache_last_channel_next,
cache_last_time_next,
cache_last_channel_len_next,
) = self.encoder.run(
[
self.encoder.get_outputs()[0].name,
self.encoder.get_outputs()[1].name,
self.encoder.get_outputs()[2].name,
self.encoder.get_outputs()[3].name,
self.encoder.get_outputs()[4].name,
],
{
self.encoder.get_inputs()[0].name: x.numpy(),
self.encoder.get_inputs()[1].name: x_lens.numpy(),
self.encoder.get_inputs()[2].name: self.cache_last_channel,
self.encoder.get_inputs()[3].name: self.cache_last_time,
self.encoder.get_inputs()[4].name: self.cache_last_channel_len,
},
)
self.cache_last_channel = cache_last_channel_next
self.cache_last_time = cache_last_time_next
self.cache_last_channel_len = cache_last_channel_len_next
# [batch_size, dim, T]
return encoder_out
def run_decoder(
self,
token: int,
state0: np.ndarray,
state1: np.ndarray,
):
target = torch.tensor([[token]], dtype=torch.int32).numpy()
target_len = torch.tensor([1], dtype=torch.int32).numpy()
(
decoder_out,
decoder_out_length,
state0_next,
state1_next,
) = self.decoder.run(
[
self.decoder.get_outputs()[0].name,
self.decoder.get_outputs()[1].name,
self.decoder.get_outputs()[2].name,
self.decoder.get_outputs()[3].name,
],
{
self.decoder.get_inputs()[0].name: target,
self.decoder.get_inputs()[1].name: target_len,
self.decoder.get_inputs()[2].name: state0,
self.decoder.get_inputs()[3].name: state1,
},
)
return decoder_out, state0_next, state1_next
def run_joiner(
self,
encoder_out: np.ndarray,
decoder_out: np.ndarray,
):
# encoder_out: [batch_size, dim, 1]
# decoder_out: [batch_size, dim, 1]
logit = self.joiner.run(
[
self.joiner.get_outputs()[0].name,
],
{
self.joiner.get_inputs()[0].name: encoder_out,
self.joiner.get_inputs()[1].name: decoder_out,
},
)[0]
# logit: [batch_size, 1, 1, vocab_size]
return logit
def main():
args = get_args()
assert Path(args.encoder).is_file(), args.encoder
assert Path(args.decoder).is_file(), args.decoder
assert Path(args.joiner).is_file(), args.joiner
assert Path(args.tokens).is_file(), args.tokens
assert Path(args.wav).is_file(), args.wav
print(vars(args))
model = OnnxModel(args.encoder, args.decoder, args.joiner)
id2token = dict()
with open(args.tokens, encoding="utf-8") as f:
for line in f:
t, idx = line.split()
id2token[int(idx)] = t
fbank = create_fbank()
audio, sample_rate = sf.read(args.wav, dtype="float32", always_2d=True)
audio = audio[:, 0] # only use the first channel
if sample_rate != 16000:
audio = librosa.resample(
audio,
orig_sr=sample_rate,
target_sr=16000,
)
sample_rate = 16000
tail_padding = np.zeros(sample_rate * 2)
audio = np.concatenate([audio, tail_padding])
window_size = model.window_size
chunk_shift = model.chunk_shift
blank = len(id2token) - 1
ans = [blank]
state0, state1 = model.get_decoder_state()
decoder_out, state0_next, state1_next = model.run_decoder(ans[-1], state0, state1)
features = compute_features(audio, fbank)
num_chunks = (features.shape[0] - window_size) // chunk_shift + 1
for i in range(num_chunks):
start = i * chunk_shift
end = start + window_size
chunk = features[start:end, :]
encoder_out = model.run_encoder(chunk)
# encoder_out:[batch_size, dim, T)
for t in range(encoder_out.shape[2]):
encoder_out_t = encoder_out[:, :, t : t + 1]
logits = model.run_joiner(encoder_out_t, decoder_out)
logits = torch.from_numpy(logits)
logits = logits.squeeze()
idx = torch.argmax(logits, dim=-1).item()
if idx != blank:
ans.append(idx)
state0 = state0_next
state1 = state1_next
decoder_out, state0_next, state1_next = model.run_decoder(
ans[-1], state0, state1
)
ans = ans[1:] # remove the first blank
tokens = [id2token[i] for i in ans]
underline = "▁"
# underline = b"\xe2\x96\x81".decode()
text = "".join(tokens).replace(underline, " ").strip()
print(args.wav)
print(text)
main()
... ...