Fangjun Kuang
Committed by GitHub

Export NeMo FastConformer Hybrid Transducer-CTC Large Streaming to ONNX. (#843)

name: export-nemo-speaker-verification-to-onnx
on:
workflow_dispatch:
concurrency:
group: export-nemo-fast-conformer-hybrid-transducer-ctc-to-onnx-${{ github.ref }}
cancel-in-progress: true
jobs:
export-nemo-fast-conformer-hybrid-transducer-ctc-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: export NeMo fast conformer
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [macos-latest]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install NeMo
shell: bash
run: |
BRANCH='main'
pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr]
pip install onnxruntime
pip install kaldi-native-fbank
pip install soundfile librosa
- name: Run
shell: bash
run: |
cd scripts/nemo/fast-conformer-hybrid-transducer-ctc
./run-ctc.sh
mv -v sherpa-onnx-nemo* ../../..
- name: Download test waves
shell: bash
run: |
mkdir test_wavs
pushd test_wavs
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/0.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/1.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/8k.wav
curl -SL -O https://hf-mirror.com/csukuangfj/sherpa-onnx-nemo-ctc-en-conformer-small/resolve/main/test_wavs/trans.txt
popd
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-ctc-80ms
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-ctc-480ms
cp -av test_wavs ./sherpa-onnx-nemo-streaming-fast-conformer-ctc-1040ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-ctc-80ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-ctc-80ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-ctc-480ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-ctc-480ms
tar cjvf sherpa-onnx-nemo-streaming-fast-conformer-ctc-1040ms.tar.bz2 sherpa-onnx-nemo-streaming-fast-conformer-ctc-1040ms
- name: Release
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.tar.bz2
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: asr-models
... ...
# Introduction
This folder contains scripts for exporting models from
- https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_hybrid_large_streaming_80ms
- https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_hybrid_large_streaming_480ms
- https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_hybrid_large_streaming_1040ms
to `sherpa-onnx`.
... ...
#!/usr/bin/env python3
import argparse
from typing import Dict
import nemo.collections.asr as nemo_asr
import onnx
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
choices=["80", "480", "1040"],
)
return parser.parse_args()
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
@torch.no_grad()
def main():
args = get_args()
model_name = f"stt_en_fastconformer_hybrid_large_streaming_{args.model}ms"
asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name=model_name)
with open("./tokens.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(asr_model.joint.vocabulary):
f.write(f"{s} {i}\n")
f.write(f"<blk> {i+1}\n")
print("Saved to tokens.txt")
decoder_type = "ctc"
asr_model.change_decoding_strategy(decoder_type=decoder_type)
asr_model.eval()
assert asr_model.encoder.streaming_cfg is not None
if isinstance(asr_model.encoder.streaming_cfg.chunk_size, list):
chunk_size = asr_model.encoder.streaming_cfg.chunk_size[1]
else:
chunk_size = asr_model.encoder.streaming_cfg.chunk_size
if isinstance(asr_model.encoder.streaming_cfg.pre_encode_cache_size, list):
pre_encode_cache_size = asr_model.encoder.streaming_cfg.pre_encode_cache_size[1]
else:
pre_encode_cache_size = asr_model.encoder.streaming_cfg.pre_encode_cache_size
window_size = chunk_size + pre_encode_cache_size
print("chunk_size", chunk_size)
print("pre_encode_cache_size", pre_encode_cache_size)
print("window_size", window_size)
chunk_shift = chunk_size
# cache_last_channel: (batch_size, dim1, dim2, dim3)
cache_last_channel_dim1 = len(asr_model.encoder.layers)
cache_last_channel_dim2 = asr_model.encoder.streaming_cfg.last_channel_cache_size
cache_last_channel_dim3 = asr_model.encoder.d_model
# cache_last_time: (batch_size, dim1, dim2, dim3)
cache_last_time_dim1 = len(asr_model.encoder.layers)
cache_last_time_dim2 = asr_model.encoder.d_model
cache_last_time_dim3 = asr_model.encoder.conv_context_size[0]
asr_model.set_export_config({"decoder_type": "ctc", "cache_support": True})
filename = "model.onnx"
asr_model.export(filename)
meta_data = {
"vocab_size": asr_model.decoder.vocab_size,
"window_size": window_size,
"chunk_shift": chunk_shift,
"normalize_type": "None",
"cache_last_channel_dim1": cache_last_channel_dim1,
"cache_last_channel_dim2": cache_last_channel_dim2,
"cache_last_channel_dim3": cache_last_channel_dim3,
"cache_last_time_dim1": cache_last_time_dim1,
"cache_last_time_dim2": cache_last_time_dim2,
"cache_last_time_dim3": cache_last_time_dim3,
"subsampling_factor": 8,
"model_type": "EncDecHybridRNNTCTCBPEModel",
"version": "1",
"model_author": "NeMo",
"url": f"https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/{model_name}",
"comment": "Only the CTC branch is exported",
}
add_meta_data(filename, meta_data)
print(meta_data)
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env bash
set -ex
if [ ! -e ./0.wav ]; then
# curl -SL -O https://hf-mirror.com/csukuangfj/icefall-asr-librispeech-streaming-zipformer-small-2024-03-18/resolve/main/test_wavs/0.wav
curl -SL -O https://huggingface.co/csukuangfj/icefall-asr-librispeech-streaming-zipformer-small-2024-03-18/resolve/main/test_wavs/0.wav
fi
ms=(
80
480
1040
)
for m in ${ms[@]}; do
./export-onnx-ctc.py --model $m
d=sherpa-onnx-nemo-streaming-fast-conformer-ctc-${m}ms
if [ ! -f $d/model.onnx ]; then
mkdir -p $d
mv -v model.onnx $d/
mv -v tokens.txt $d/
ls -lh $d
fi
done
# Now test the exported models
for m in ${ms[@]}; do
d=sherpa-onnx-nemo-streaming-fast-conformer-ctc-${m}ms
python3 ./test-onnx-ctc.py \
--model $d/model.onnx \
--tokens $d/tokens.txt \
--wav ./0.wav
done
... ...
#!/usr/bin/env python3
import argparse
from pathlib import Path
import kaldi_native_fbank as knf
import numpy as np
import onnxruntime as ort
import torch
import soundfile as sf
import librosa
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="Path to model.onnx")
parser.add_argument("--tokens", type=str, required=True, help="Path to tokens.txt")
parser.add_argument("--wav", type=str, required=True, help="Path to test.wav")
return parser.parse_args()
def create_fbank():
opts = knf.FbankOptions()
opts.frame_opts.dither = 0
opts.frame_opts.remove_dc_offset = False
opts.frame_opts.window_type = "hann"
opts.mel_opts.low_freq = 0
opts.mel_opts.num_bins = 80
opts.mel_opts.is_librosa = True
fbank = knf.OnlineFbank(opts)
return fbank
def compute_features(audio, fbank):
assert len(audio.shape) == 1, audio.shape
fbank.accept_waveform(16000, audio)
ans = []
processed = 0
while processed < fbank.num_frames_ready:
ans.append(np.array(fbank.get_frame(processed)))
processed += 1
ans = np.stack(ans)
return ans
class OnnxModel:
def __init__(
self,
filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.model.get_modelmeta().custom_metadata_map
print(meta)
self.window_size = int(meta["window_size"])
self.chunk_shift = int(meta["chunk_shift"])
self.cache_last_channel_dim1 = int(meta["cache_last_channel_dim1"])
self.cache_last_channel_dim2 = int(meta["cache_last_channel_dim2"])
self.cache_last_channel_dim3 = int(meta["cache_last_channel_dim3"])
self.cache_last_time_dim1 = int(meta["cache_last_time_dim1"])
self.cache_last_time_dim2 = int(meta["cache_last_time_dim2"])
self.cache_last_time_dim3 = int(meta["cache_last_time_dim3"])
self.init_cache_state()
def init_cache_state(self):
self.cache_last_channel = torch.zeros(
1,
self.cache_last_channel_dim1,
self.cache_last_channel_dim2,
self.cache_last_channel_dim3,
dtype=torch.float32,
).numpy()
self.cache_last_time = torch.zeros(
1,
self.cache_last_time_dim1,
self.cache_last_time_dim2,
self.cache_last_time_dim3,
dtype=torch.float32,
).numpy()
self.cache_last_channel_len = torch.ones([1], dtype=torch.int64).numpy()
def __call__(self, x: np.ndarray):
# x: (T, C)
x = torch.from_numpy(x)
x = x.t().unsqueeze(0)
# x: [1, C, T]
x_lens = torch.tensor([x.shape[-1]], dtype=torch.int64)
(
log_probs,
log_probs_len,
cache_last_channel_next,
cache_last_time_next,
cache_last_channel_len_next,
) = self.model.run(
[
self.model.get_outputs()[0].name,
self.model.get_outputs()[1].name,
self.model.get_outputs()[2].name,
self.model.get_outputs()[3].name,
self.model.get_outputs()[4].name,
],
{
self.model.get_inputs()[0].name: x.numpy(),
self.model.get_inputs()[1].name: x_lens.numpy(),
self.model.get_inputs()[2].name: self.cache_last_channel,
self.model.get_inputs()[3].name: self.cache_last_time,
self.model.get_inputs()[4].name: self.cache_last_channel_len,
},
)
self.cache_last_channel = cache_last_channel_next
self.cache_last_time = cache_last_time_next
self.cache_last_channel_len = cache_last_channel_len_next
# [T, vocab_size]
return torch.from_numpy(log_probs).squeeze(0)
def main():
args = get_args()
assert Path(args.model).is_file(), args.model
assert Path(args.tokens).is_file(), args.tokens
assert Path(args.wav).is_file(), args.wav
print(vars(args))
model = OnnxModel(args.model)
id2token = dict()
with open(args.tokens, encoding="utf-8") as f:
for line in f:
t, idx = line.split()
id2token[int(idx)] = t
fbank = create_fbank()
audio, sample_rate = sf.read(args.wav, dtype="float32", always_2d=True)
audio = audio[:, 0] # only use the first channel
if sample_rate != 16000:
audio = librosa.resample(
audio,
orig_sr=sample_rate,
target_sr=16000,
)
sample_rate = 16000
window_size = model.window_size
chunk_shift = model.chunk_shift
blank = len(id2token) - 1
prev = -1
ans = []
features = compute_features(audio, fbank)
num_chunks = (features.shape[0] - window_size) // chunk_shift + 1
for i in range(num_chunks):
start = i * chunk_shift
end = start + window_size
chunk = features[start:end, :]
log_probs = model(chunk)
ids = torch.argmax(log_probs, dim=1).tolist()
for i in ids:
if i != blank and i != prev:
ans.append(i)
prev = i
tokens = [id2token[i] for i in ans]
underline = "▁"
# underline = b"\xe2\x96\x81".decode()
text = "".join(tokens).replace(underline, " ").strip()
print(args.wav)
print(text)
main()
... ...