Committed by
GitHub
Add Python API examples for speaker recognition with VAD and ASR. (#532)
正在显示
3 个修改的文件
包含
750 行增加
和
4 行删除
| 1 | +#!/usr/bin/env python3 | ||
| 2 | + | ||
| 3 | +""" | ||
| 4 | +This script shows how to use Python APIs for speaker identification with | ||
| 5 | +a microphone, a VAD model, and a non-streaming ASR model. | ||
| 6 | + | ||
| 7 | +Please see also ./generate-subtitles.py | ||
| 8 | + | ||
| 9 | +Usage: | ||
| 10 | + | ||
| 11 | +(1) Prepare a text file containing speaker related files. | ||
| 12 | + | ||
| 13 | +Each line in the text file contains two columns. The first column is the | ||
| 14 | +speaker name, while the second column contains the wave file of the speaker. | ||
| 15 | + | ||
| 16 | +If the text file contains multiple wave files for the same speaker, then the | ||
| 17 | +embeddings of these files are averaged. | ||
| 18 | + | ||
| 19 | +An example text file is given below: | ||
| 20 | + | ||
| 21 | + foo /path/to/a.wav | ||
| 22 | + bar /path/to/b.wav | ||
| 23 | + foo /path/to/c.wav | ||
| 24 | + foobar /path/to/d.wav | ||
| 25 | + | ||
| 26 | +Each wave file should contain only a single channel; the sample format | ||
| 27 | +should be int16_t; the sample rate can be arbitrary. | ||
| 28 | + | ||
| 29 | +(2) Download a model for computing speaker embeddings | ||
| 30 | + | ||
| 31 | +Please visit | ||
| 32 | +https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models | ||
| 33 | +to download a model. An example is given below: | ||
| 34 | + | ||
| 35 | + wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/wespeaker_zh_cnceleb_resnet34.onnx | ||
| 36 | + | ||
| 37 | +Note that `zh` means Chinese, while `en` means English. | ||
| 38 | + | ||
| 39 | +(3) Download the VAD model | ||
| 40 | +Please visit | ||
| 41 | +https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx | ||
| 42 | +to download silero_vad.onnx | ||
| 43 | + | ||
| 44 | +For instance, | ||
| 45 | + | ||
| 46 | +wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx | ||
| 47 | + | ||
| 48 | +(4) Please refer to ./generate-subtitles.py | ||
| 49 | +to download a non-streaming ASR model. | ||
| 50 | + | ||
| 51 | +(5) Run this script | ||
| 52 | + | ||
| 53 | +Assume the filename of the text file is speaker.txt. | ||
| 54 | + | ||
| 55 | +python3 ./python-api-examples/speaker-identification-with-vad.py \ | ||
| 56 | + --silero-vad-model=/path/to/silero_vad.onnx \ | ||
| 57 | + --speaker-file ./speaker.txt \ | ||
| 58 | + --model ./wespeaker_zh_cnceleb_resnet34.onnx | ||
| 59 | +""" | ||
| 60 | +import argparse | ||
| 61 | +import sys | ||
| 62 | +from collections import defaultdict | ||
| 63 | +from pathlib import Path | ||
| 64 | +from typing import Dict, List, Tuple | ||
| 65 | + | ||
| 66 | +import numpy as np | ||
| 67 | +import sherpa_onnx | ||
| 68 | +import torchaudio | ||
| 69 | + | ||
| 70 | +try: | ||
| 71 | + import sounddevice as sd | ||
| 72 | +except ImportError: | ||
| 73 | + print("Please install sounddevice first. You can use") | ||
| 74 | + print() | ||
| 75 | + print(" pip install sounddevice") | ||
| 76 | + print() | ||
| 77 | + print("to install it") | ||
| 78 | + sys.exit(-1) | ||
| 79 | + | ||
| 80 | +g_sample_rate = 16000 | ||
| 81 | + | ||
| 82 | + | ||
| 83 | +def register_non_streaming_asr_model_args(parser): | ||
| 84 | + parser.add_argument( | ||
| 85 | + "--tokens", | ||
| 86 | + type=str, | ||
| 87 | + help="Path to tokens.txt", | ||
| 88 | + ) | ||
| 89 | + | ||
| 90 | + parser.add_argument( | ||
| 91 | + "--encoder", | ||
| 92 | + default="", | ||
| 93 | + type=str, | ||
| 94 | + help="Path to the transducer encoder model", | ||
| 95 | + ) | ||
| 96 | + | ||
| 97 | + parser.add_argument( | ||
| 98 | + "--decoder", | ||
| 99 | + default="", | ||
| 100 | + type=str, | ||
| 101 | + help="Path to the transducer decoder model", | ||
| 102 | + ) | ||
| 103 | + | ||
| 104 | + parser.add_argument( | ||
| 105 | + "--joiner", | ||
| 106 | + default="", | ||
| 107 | + type=str, | ||
| 108 | + help="Path to the transducer joiner model", | ||
| 109 | + ) | ||
| 110 | + | ||
| 111 | + parser.add_argument( | ||
| 112 | + "--paraformer", | ||
| 113 | + default="", | ||
| 114 | + type=str, | ||
| 115 | + help="Path to the model.onnx from Paraformer", | ||
| 116 | + ) | ||
| 117 | + | ||
| 118 | + parser.add_argument( | ||
| 119 | + "--wenet-ctc", | ||
| 120 | + default="", | ||
| 121 | + type=str, | ||
| 122 | + help="Path to the CTC model.onnx from WeNet", | ||
| 123 | + ) | ||
| 124 | + | ||
| 125 | + parser.add_argument( | ||
| 126 | + "--whisper-encoder", | ||
| 127 | + default="", | ||
| 128 | + type=str, | ||
| 129 | + help="Path to whisper encoder model", | ||
| 130 | + ) | ||
| 131 | + | ||
| 132 | + parser.add_argument( | ||
| 133 | + "--whisper-decoder", | ||
| 134 | + default="", | ||
| 135 | + type=str, | ||
| 136 | + help="Path to whisper decoder model", | ||
| 137 | + ) | ||
| 138 | + | ||
| 139 | + parser.add_argument( | ||
| 140 | + "--whisper-language", | ||
| 141 | + default="", | ||
| 142 | + type=str, | ||
| 143 | + help="""It specifies the spoken language in the input file. | ||
| 144 | + Example values: en, fr, de, zh, jp. | ||
| 145 | + Available languages for multilingual models can be found at | ||
| 146 | + https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10 | ||
| 147 | + If not specified, we infer the language from the input audio file. | ||
| 148 | + """, | ||
| 149 | + ) | ||
| 150 | + | ||
| 151 | + parser.add_argument( | ||
| 152 | + "--whisper-task", | ||
| 153 | + default="transcribe", | ||
| 154 | + choices=["transcribe", "translate"], | ||
| 155 | + type=str, | ||
| 156 | + help="""For multilingual models, if you specify translate, the output | ||
| 157 | + will be in English. | ||
| 158 | + """, | ||
| 159 | + ) | ||
| 160 | + | ||
| 161 | + parser.add_argument( | ||
| 162 | + "--whisper-tail-paddings", | ||
| 163 | + default=-1, | ||
| 164 | + type=int, | ||
| 165 | + help="""Number of tail padding frames. | ||
| 166 | + We have removed the 30-second constraint from whisper, so you need to | ||
| 167 | + choose the amount of tail padding frames by yourself. | ||
| 168 | + Use -1 to use a default value for tail padding. | ||
| 169 | + """, | ||
| 170 | + ) | ||
| 171 | + | ||
| 172 | + parser.add_argument( | ||
| 173 | + "--decoding-method", | ||
| 174 | + type=str, | ||
| 175 | + default="greedy_search", | ||
| 176 | + help="""Valid values are greedy_search and modified_beam_search. | ||
| 177 | + modified_beam_search is valid only for transducer models. | ||
| 178 | + """, | ||
| 179 | + ) | ||
| 180 | + | ||
| 181 | + parser.add_argument( | ||
| 182 | + "--feature-dim", | ||
| 183 | + type=int, | ||
| 184 | + default=80, | ||
| 185 | + help="Feature dimension. Must match the one expected by the model", | ||
| 186 | + ) | ||
| 187 | + | ||
| 188 | + | ||
| 189 | +def get_args(): | ||
| 190 | + parser = argparse.ArgumentParser( | ||
| 191 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
| 192 | + ) | ||
| 193 | + | ||
| 194 | + register_non_streaming_asr_model_args(parser) | ||
| 195 | + | ||
| 196 | + parser.add_argument( | ||
| 197 | + "--speaker-file", | ||
| 198 | + type=str, | ||
| 199 | + required=True, | ||
| 200 | + help="""Path to the speaker file. Read the help doc at the beginning of this | ||
| 201 | + file for the format.""", | ||
| 202 | + ) | ||
| 203 | + | ||
| 204 | + parser.add_argument( | ||
| 205 | + "--model", | ||
| 206 | + type=str, | ||
| 207 | + required=True, | ||
| 208 | + help="Path to the speaker embedding model file.", | ||
| 209 | + ) | ||
| 210 | + | ||
| 211 | + parser.add_argument( | ||
| 212 | + "--silero-vad-model", | ||
| 213 | + type=str, | ||
| 214 | + required=True, | ||
| 215 | + help="Path to silero_vad.onnx", | ||
| 216 | + ) | ||
| 217 | + | ||
| 218 | + parser.add_argument("--threshold", type=float, default=0.6) | ||
| 219 | + | ||
| 220 | + parser.add_argument( | ||
| 221 | + "--num-threads", | ||
| 222 | + type=int, | ||
| 223 | + default=1, | ||
| 224 | + help="Number of threads for neural network computation", | ||
| 225 | + ) | ||
| 226 | + | ||
| 227 | + parser.add_argument( | ||
| 228 | + "--debug", | ||
| 229 | + type=bool, | ||
| 230 | + default=False, | ||
| 231 | + help="True to show debug messages", | ||
| 232 | + ) | ||
| 233 | + | ||
| 234 | + parser.add_argument( | ||
| 235 | + "--provider", | ||
| 236 | + type=str, | ||
| 237 | + default="cpu", | ||
| 238 | + help="Valid values: cpu, cuda, coreml", | ||
| 239 | + ) | ||
| 240 | + | ||
| 241 | + return parser.parse_args() | ||
| 242 | + | ||
| 243 | + | ||
| 244 | +def assert_file_exists(filename: str): | ||
| 245 | + assert Path(filename).is_file(), ( | ||
| 246 | + f"{filename} does not exist!\n" | ||
| 247 | + "Please refer to " | ||
| 248 | + "https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it" | ||
| 249 | + ) | ||
| 250 | + | ||
| 251 | + | ||
| 252 | +def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer: | ||
| 253 | + if args.encoder: | ||
| 254 | + assert len(args.paraformer) == 0, args.paraformer | ||
| 255 | + assert len(args.wenet_ctc) == 0, args.wenet_ctc | ||
| 256 | + assert len(args.whisper_encoder) == 0, args.whisper_encoder | ||
| 257 | + assert len(args.whisper_decoder) == 0, args.whisper_decoder | ||
| 258 | + | ||
| 259 | + assert_file_exists(args.encoder) | ||
| 260 | + assert_file_exists(args.decoder) | ||
| 261 | + assert_file_exists(args.joiner) | ||
| 262 | + | ||
| 263 | + recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | ||
| 264 | + encoder=args.encoder, | ||
| 265 | + decoder=args.decoder, | ||
| 266 | + joiner=args.joiner, | ||
| 267 | + tokens=args.tokens, | ||
| 268 | + num_threads=args.num_threads, | ||
| 269 | + sample_rate=args.sample_rate, | ||
| 270 | + feature_dim=args.feature_dim, | ||
| 271 | + decoding_method=args.decoding_method, | ||
| 272 | + debug=args.debug, | ||
| 273 | + ) | ||
| 274 | + elif args.paraformer: | ||
| 275 | + assert len(args.wenet_ctc) == 0, args.wenet_ctc | ||
| 276 | + assert len(args.whisper_encoder) == 0, args.whisper_encoder | ||
| 277 | + assert len(args.whisper_decoder) == 0, args.whisper_decoder | ||
| 278 | + | ||
| 279 | + assert_file_exists(args.paraformer) | ||
| 280 | + | ||
| 281 | + recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( | ||
| 282 | + paraformer=args.paraformer, | ||
| 283 | + tokens=args.tokens, | ||
| 284 | + num_threads=args.num_threads, | ||
| 285 | + sample_rate=g_sample_rate, | ||
| 286 | + feature_dim=args.feature_dim, | ||
| 287 | + decoding_method=args.decoding_method, | ||
| 288 | + debug=args.debug, | ||
| 289 | + ) | ||
| 290 | + elif args.wenet_ctc: | ||
| 291 | + assert len(args.whisper_encoder) == 0, args.whisper_encoder | ||
| 292 | + assert len(args.whisper_decoder) == 0, args.whisper_decoder | ||
| 293 | + | ||
| 294 | + assert_file_exists(args.wenet_ctc) | ||
| 295 | + | ||
| 296 | + recognizer = sherpa_onnx.OfflineRecognizer.from_wenet_ctc( | ||
| 297 | + model=args.wenet_ctc, | ||
| 298 | + tokens=args.tokens, | ||
| 299 | + num_threads=args.num_threads, | ||
| 300 | + sample_rate=args.sample_rate, | ||
| 301 | + feature_dim=args.feature_dim, | ||
| 302 | + decoding_method=args.decoding_method, | ||
| 303 | + debug=args.debug, | ||
| 304 | + ) | ||
| 305 | + elif args.whisper_encoder: | ||
| 306 | + assert_file_exists(args.whisper_encoder) | ||
| 307 | + assert_file_exists(args.whisper_decoder) | ||
| 308 | + | ||
| 309 | + recognizer = sherpa_onnx.OfflineRecognizer.from_whisper( | ||
| 310 | + encoder=args.whisper_encoder, | ||
| 311 | + decoder=args.whisper_decoder, | ||
| 312 | + tokens=args.tokens, | ||
| 313 | + num_threads=args.num_threads, | ||
| 314 | + decoding_method=args.decoding_method, | ||
| 315 | + debug=args.debug, | ||
| 316 | + language=args.whisper_language, | ||
| 317 | + task=args.whisper_task, | ||
| 318 | + tail_paddings=args.whisper_tail_paddings, | ||
| 319 | + ) | ||
| 320 | + else: | ||
| 321 | + raise ValueError("Please specify at least one model") | ||
| 322 | + | ||
| 323 | + return recognizer | ||
| 324 | + | ||
| 325 | + | ||
| 326 | +def load_speaker_embedding_model(args): | ||
| 327 | + config = sherpa_onnx.SpeakerEmbeddingExtractorConfig( | ||
| 328 | + model=args.model, | ||
| 329 | + num_threads=args.num_threads, | ||
| 330 | + debug=args.debug, | ||
| 331 | + provider=args.provider, | ||
| 332 | + ) | ||
| 333 | + if not config.validate(): | ||
| 334 | + raise ValueError(f"Invalid config. {config}") | ||
| 335 | + extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config) | ||
| 336 | + return extractor | ||
| 337 | + | ||
| 338 | + | ||
| 339 | +def load_speaker_file(args) -> Dict[str, List[str]]: | ||
| 340 | + if not Path(args.speaker_file).is_file(): | ||
| 341 | + raise ValueError(f"--speaker-file {args.speaker_file} does not exist") | ||
| 342 | + | ||
| 343 | + ans = defaultdict(list) | ||
| 344 | + with open(args.speaker_file) as f: | ||
| 345 | + for line in f: | ||
| 346 | + line = line.strip() | ||
| 347 | + if not line: | ||
| 348 | + continue | ||
| 349 | + | ||
| 350 | + fields = line.split() | ||
| 351 | + if len(fields) != 2: | ||
| 352 | + raise ValueError(f"Invalid line: {line}. Fields: {fields}") | ||
| 353 | + | ||
| 354 | + speaker_name, filename = fields | ||
| 355 | + ans[speaker_name].append(filename) | ||
| 356 | + return ans | ||
| 357 | + | ||
| 358 | + | ||
| 359 | +def load_audio(filename: str) -> Tuple[np.ndarray, int]: | ||
| 360 | + samples, sample_rate = torchaudio.load(filename) | ||
| 361 | + return samples[0].contiguous().numpy(), sample_rate | ||
| 362 | + | ||
| 363 | + | ||
| 364 | +def compute_speaker_embedding( | ||
| 365 | + filenames: List[str], | ||
| 366 | + extractor: sherpa_onnx.SpeakerEmbeddingExtractor, | ||
| 367 | +) -> np.ndarray: | ||
| 368 | + assert len(filenames) > 0, "filenames is empty" | ||
| 369 | + | ||
| 370 | + ans = None | ||
| 371 | + for filename in filenames: | ||
| 372 | + print(f"processing {filename}") | ||
| 373 | + samples, sample_rate = load_audio(filename) | ||
| 374 | + stream = extractor.create_stream() | ||
| 375 | + stream.accept_waveform(sample_rate=sample_rate, waveform=samples) | ||
| 376 | + stream.input_finished() | ||
| 377 | + | ||
| 378 | + assert extractor.is_ready(stream) | ||
| 379 | + embedding = extractor.compute(stream) | ||
| 380 | + embedding = np.array(embedding) | ||
| 381 | + if ans is None: | ||
| 382 | + ans = embedding | ||
| 383 | + else: | ||
| 384 | + ans += embedding | ||
| 385 | + | ||
| 386 | + return ans / len(filenames) | ||
| 387 | + | ||
| 388 | + | ||
| 389 | +def main(): | ||
| 390 | + args = get_args() | ||
| 391 | + print(args) | ||
| 392 | + recognizer = create_recognizer(args) | ||
| 393 | + extractor = load_speaker_embedding_model(args) | ||
| 394 | + speaker_file = load_speaker_file(args) | ||
| 395 | + | ||
| 396 | + manager = sherpa_onnx.SpeakerEmbeddingManager(extractor.dim) | ||
| 397 | + for name, filename_list in speaker_file.items(): | ||
| 398 | + embedding = compute_speaker_embedding( | ||
| 399 | + filenames=filename_list, | ||
| 400 | + extractor=extractor, | ||
| 401 | + ) | ||
| 402 | + status = manager.add(name, embedding) | ||
| 403 | + if not status: | ||
| 404 | + raise RuntimeError(f"Failed to register speaker {name}") | ||
| 405 | + | ||
| 406 | + vad_config = sherpa_onnx.VadModelConfig() | ||
| 407 | + vad_config.silero_vad.model = args.silero_vad_model | ||
| 408 | + vad_config.silero_vad.min_silence_duration = 0.25 | ||
| 409 | + vad_config.silero_vad.min_speech_duration = 0.25 | ||
| 410 | + vad_config.sample_rate = g_sample_rate | ||
| 411 | + | ||
| 412 | + window_size = vad_config.silero_vad.window_size | ||
| 413 | + vad = sherpa_onnx.VoiceActivityDetector(vad_config, buffer_size_in_seconds=100) | ||
| 414 | + | ||
| 415 | + samples_per_read = int(0.1 * g_sample_rate) # 0.1 second = 100 ms | ||
| 416 | + | ||
| 417 | + devices = sd.query_devices() | ||
| 418 | + if len(devices) == 0: | ||
| 419 | + print("No microphone devices found") | ||
| 420 | + sys.exit(0) | ||
| 421 | + | ||
| 422 | + print(devices) | ||
| 423 | + default_input_device_idx = sd.default.device[0] | ||
| 424 | + print(f'Use default device: {devices[default_input_device_idx]["name"]}') | ||
| 425 | + | ||
| 426 | + print("Started! Please speak") | ||
| 427 | + | ||
| 428 | + idx = 0 | ||
| 429 | + buffer = [] | ||
| 430 | + with sd.InputStream(channels=1, dtype="float32", samplerate=g_sample_rate) as s: | ||
| 431 | + while True: | ||
| 432 | + samples, _ = s.read(samples_per_read) # a blocking read | ||
| 433 | + samples = samples.reshape(-1) | ||
| 434 | + buffer = np.concatenate([buffer, samples]) | ||
| 435 | + while len(buffer) > window_size: | ||
| 436 | + vad.accept_waveform(buffer[:window_size]) | ||
| 437 | + buffer = buffer[window_size:] | ||
| 438 | + | ||
| 439 | + while not vad.empty(): | ||
| 440 | + if len(vad.front.samples) < 0.5 * g_sample_rate: | ||
| 441 | + # this segment is too short, skip it | ||
| 442 | + vad.pop() | ||
| 443 | + continue | ||
| 444 | + stream = extractor.create_stream() | ||
| 445 | + stream.accept_waveform( | ||
| 446 | + sample_rate=g_sample_rate, waveform=vad.front.samples | ||
| 447 | + ) | ||
| 448 | + stream.input_finished() | ||
| 449 | + | ||
| 450 | + embedding = extractor.compute(stream) | ||
| 451 | + embedding = np.array(embedding) | ||
| 452 | + name = manager.search(embedding, threshold=args.threshold) | ||
| 453 | + if not name: | ||
| 454 | + name = "unknown" | ||
| 455 | + | ||
| 456 | + # Now for non-streaming ASR | ||
| 457 | + asr_stream = recognizer.create_stream() | ||
| 458 | + asr_stream.accept_waveform( | ||
| 459 | + sample_rate=g_sample_rate, waveform=vad.front.samples | ||
| 460 | + ) | ||
| 461 | + recognizer.decode_stream(asr_stream) | ||
| 462 | + text = asr_stream.result.text | ||
| 463 | + | ||
| 464 | + vad.pop() | ||
| 465 | + | ||
| 466 | + print(f"\r{idx}-{name}: {text}") | ||
| 467 | + idx += 1 | ||
| 468 | + | ||
| 469 | + | ||
| 470 | +if __name__ == "__main__": | ||
| 471 | + try: | ||
| 472 | + main() | ||
| 473 | + except KeyboardInterrupt: | ||
| 474 | + print("\nCaught Ctrl + C. Exiting") |
| 1 | +#!/usr/bin/env python3 | ||
| 2 | + | ||
| 3 | +""" | ||
| 4 | +This script shows how to use Python APIs for speaker identification with | ||
| 5 | +a microphone and a VAD model | ||
| 6 | + | ||
| 7 | +Usage: | ||
| 8 | + | ||
| 9 | +(1) Prepare a text file containing speaker related files. | ||
| 10 | + | ||
| 11 | +Each line in the text file contains two columns. The first column is the | ||
| 12 | +speaker name, while the second column contains the wave file of the speaker. | ||
| 13 | + | ||
| 14 | +If the text file contains multiple wave files for the same speaker, then the | ||
| 15 | +embeddings of these files are averaged. | ||
| 16 | + | ||
| 17 | +An example text file is given below: | ||
| 18 | + | ||
| 19 | + foo /path/to/a.wav | ||
| 20 | + bar /path/to/b.wav | ||
| 21 | + foo /path/to/c.wav | ||
| 22 | + foobar /path/to/d.wav | ||
| 23 | + | ||
| 24 | +Each wave file should contain only a single channel; the sample format | ||
| 25 | +should be int16_t; the sample rate can be arbitrary. | ||
| 26 | + | ||
| 27 | +(2) Download a model for computing speaker embeddings | ||
| 28 | + | ||
| 29 | +Please visit | ||
| 30 | +https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models | ||
| 31 | +to download a model. An example is given below: | ||
| 32 | + | ||
| 33 | + wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/wespeaker_zh_cnceleb_resnet34.onnx | ||
| 34 | + | ||
| 35 | +Note that `zh` means Chinese, while `en` means English. | ||
| 36 | + | ||
| 37 | +(3) Download the VAD model | ||
| 38 | +Please visit | ||
| 39 | +https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx | ||
| 40 | +to download silero_vad.onnx | ||
| 41 | + | ||
| 42 | +For instance, | ||
| 43 | + | ||
| 44 | +wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx | ||
| 45 | + | ||
| 46 | +(4) Run this script | ||
| 47 | + | ||
| 48 | +Assume the filename of the text file is speaker.txt. | ||
| 49 | + | ||
| 50 | +python3 ./python-api-examples/speaker-identification-with-vad.py \ | ||
| 51 | + --silero-vad-model=/path/to/silero_vad.onnx \ | ||
| 52 | + --speaker-file ./speaker.txt \ | ||
| 53 | + --model ./wespeaker_zh_cnceleb_resnet34.onnx | ||
| 54 | +""" | ||
| 55 | +import argparse | ||
| 56 | +import sys | ||
| 57 | +from collections import defaultdict | ||
| 58 | +from pathlib import Path | ||
| 59 | +from typing import Dict, List, Tuple | ||
| 60 | + | ||
| 61 | +import numpy as np | ||
| 62 | +import sherpa_onnx | ||
| 63 | +import torchaudio | ||
| 64 | + | ||
| 65 | +try: | ||
| 66 | + import sounddevice as sd | ||
| 67 | +except ImportError: | ||
| 68 | + print("Please install sounddevice first. You can use") | ||
| 69 | + print() | ||
| 70 | + print(" pip install sounddevice") | ||
| 71 | + print() | ||
| 72 | + print("to install it") | ||
| 73 | + sys.exit(-1) | ||
| 74 | + | ||
| 75 | + | ||
| 76 | +def get_args(): | ||
| 77 | + parser = argparse.ArgumentParser( | ||
| 78 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
| 79 | + ) | ||
| 80 | + | ||
| 81 | + parser.add_argument( | ||
| 82 | + "--speaker-file", | ||
| 83 | + type=str, | ||
| 84 | + required=True, | ||
| 85 | + help="""Path to the speaker file. Read the help doc at the beginning of this | ||
| 86 | + file for the format.""", | ||
| 87 | + ) | ||
| 88 | + | ||
| 89 | + parser.add_argument( | ||
| 90 | + "--model", | ||
| 91 | + type=str, | ||
| 92 | + required=True, | ||
| 93 | + help="Path to the speaker embedding model file.", | ||
| 94 | + ) | ||
| 95 | + | ||
| 96 | + parser.add_argument( | ||
| 97 | + "--silero-vad-model", | ||
| 98 | + type=str, | ||
| 99 | + required=True, | ||
| 100 | + help="Path to silero_vad.onnx", | ||
| 101 | + ) | ||
| 102 | + | ||
| 103 | + parser.add_argument("--threshold", type=float, default=0.6) | ||
| 104 | + | ||
| 105 | + parser.add_argument( | ||
| 106 | + "--num-threads", | ||
| 107 | + type=int, | ||
| 108 | + default=1, | ||
| 109 | + help="Number of threads for neural network computation", | ||
| 110 | + ) | ||
| 111 | + | ||
| 112 | + parser.add_argument( | ||
| 113 | + "--debug", | ||
| 114 | + type=bool, | ||
| 115 | + default=False, | ||
| 116 | + help="True to show debug messages", | ||
| 117 | + ) | ||
| 118 | + | ||
| 119 | + parser.add_argument( | ||
| 120 | + "--provider", | ||
| 121 | + type=str, | ||
| 122 | + default="cpu", | ||
| 123 | + help="Valid values: cpu, cuda, coreml", | ||
| 124 | + ) | ||
| 125 | + | ||
| 126 | + return parser.parse_args() | ||
| 127 | + | ||
| 128 | + | ||
| 129 | +def load_speaker_embedding_model(args): | ||
| 130 | + config = sherpa_onnx.SpeakerEmbeddingExtractorConfig( | ||
| 131 | + model=args.model, | ||
| 132 | + num_threads=args.num_threads, | ||
| 133 | + debug=args.debug, | ||
| 134 | + provider=args.provider, | ||
| 135 | + ) | ||
| 136 | + if not config.validate(): | ||
| 137 | + raise ValueError(f"Invalid config. {config}") | ||
| 138 | + extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config) | ||
| 139 | + return extractor | ||
| 140 | + | ||
| 141 | + | ||
| 142 | +def load_speaker_file(args) -> Dict[str, List[str]]: | ||
| 143 | + if not Path(args.speaker_file).is_file(): | ||
| 144 | + raise ValueError(f"--speaker-file {args.speaker_file} does not exist") | ||
| 145 | + | ||
| 146 | + ans = defaultdict(list) | ||
| 147 | + with open(args.speaker_file) as f: | ||
| 148 | + for line in f: | ||
| 149 | + line = line.strip() | ||
| 150 | + if not line: | ||
| 151 | + continue | ||
| 152 | + | ||
| 153 | + fields = line.split() | ||
| 154 | + if len(fields) != 2: | ||
| 155 | + raise ValueError(f"Invalid line: {line}. Fields: {fields}") | ||
| 156 | + | ||
| 157 | + speaker_name, filename = fields | ||
| 158 | + ans[speaker_name].append(filename) | ||
| 159 | + return ans | ||
| 160 | + | ||
| 161 | + | ||
| 162 | +def load_audio(filename: str) -> Tuple[np.ndarray, int]: | ||
| 163 | + samples, sample_rate = torchaudio.load(filename) | ||
| 164 | + return samples[0].contiguous().numpy(), sample_rate | ||
| 165 | + | ||
| 166 | + | ||
| 167 | +def compute_speaker_embedding( | ||
| 168 | + filenames: List[str], | ||
| 169 | + extractor: sherpa_onnx.SpeakerEmbeddingExtractor, | ||
| 170 | +) -> np.ndarray: | ||
| 171 | + assert len(filenames) > 0, "filenames is empty" | ||
| 172 | + | ||
| 173 | + ans = None | ||
| 174 | + for filename in filenames: | ||
| 175 | + print(f"processing {filename}") | ||
| 176 | + samples, sample_rate = load_audio(filename) | ||
| 177 | + stream = extractor.create_stream() | ||
| 178 | + stream.accept_waveform(sample_rate=sample_rate, waveform=samples) | ||
| 179 | + stream.input_finished() | ||
| 180 | + | ||
| 181 | + assert extractor.is_ready(stream) | ||
| 182 | + embedding = extractor.compute(stream) | ||
| 183 | + embedding = np.array(embedding) | ||
| 184 | + if ans is None: | ||
| 185 | + ans = embedding | ||
| 186 | + else: | ||
| 187 | + ans += embedding | ||
| 188 | + | ||
| 189 | + return ans / len(filenames) | ||
| 190 | + | ||
| 191 | + | ||
| 192 | +g_sample_rate = 16000 | ||
| 193 | + | ||
| 194 | + | ||
| 195 | +def main(): | ||
| 196 | + args = get_args() | ||
| 197 | + print(args) | ||
| 198 | + extractor = load_speaker_embedding_model(args) | ||
| 199 | + speaker_file = load_speaker_file(args) | ||
| 200 | + | ||
| 201 | + manager = sherpa_onnx.SpeakerEmbeddingManager(extractor.dim) | ||
| 202 | + for name, filename_list in speaker_file.items(): | ||
| 203 | + embedding = compute_speaker_embedding( | ||
| 204 | + filenames=filename_list, | ||
| 205 | + extractor=extractor, | ||
| 206 | + ) | ||
| 207 | + status = manager.add(name, embedding) | ||
| 208 | + if not status: | ||
| 209 | + raise RuntimeError(f"Failed to register speaker {name}") | ||
| 210 | + | ||
| 211 | + vad_config = sherpa_onnx.VadModelConfig() | ||
| 212 | + vad_config.silero_vad.model = args.silero_vad_model | ||
| 213 | + vad_config.silero_vad.min_silence_duration = 0.25 | ||
| 214 | + vad_config.silero_vad.min_speech_duration = 0.25 | ||
| 215 | + vad_config.sample_rate = g_sample_rate | ||
| 216 | + | ||
| 217 | + window_size = vad_config.silero_vad.window_size | ||
| 218 | + vad = sherpa_onnx.VoiceActivityDetector(vad_config, buffer_size_in_seconds=100) | ||
| 219 | + | ||
| 220 | + samples_per_read = int(0.1 * g_sample_rate) # 0.1 second = 100 ms | ||
| 221 | + | ||
| 222 | + devices = sd.query_devices() | ||
| 223 | + if len(devices) == 0: | ||
| 224 | + print("No microphone devices found") | ||
| 225 | + sys.exit(0) | ||
| 226 | + | ||
| 227 | + print(devices) | ||
| 228 | + default_input_device_idx = sd.default.device[0] | ||
| 229 | + print(f'Use default device: {devices[default_input_device_idx]["name"]}') | ||
| 230 | + | ||
| 231 | + print("Started! Please speak") | ||
| 232 | + | ||
| 233 | + idx = 0 | ||
| 234 | + buffer = [] | ||
| 235 | + with sd.InputStream(channels=1, dtype="float32", samplerate=g_sample_rate) as s: | ||
| 236 | + while True: | ||
| 237 | + samples, _ = s.read(samples_per_read) # a blocking read | ||
| 238 | + samples = samples.reshape(-1) | ||
| 239 | + buffer = np.concatenate([buffer, samples]) | ||
| 240 | + while len(buffer) > window_size: | ||
| 241 | + vad.accept_waveform(buffer[:window_size]) | ||
| 242 | + buffer = buffer[window_size:] | ||
| 243 | + | ||
| 244 | + while not vad.empty(): | ||
| 245 | + if len(vad.front.samples) < 0.5 * g_sample_rate: | ||
| 246 | + # this segment is too short, skip it | ||
| 247 | + vad.pop() | ||
| 248 | + continue | ||
| 249 | + stream = extractor.create_stream() | ||
| 250 | + stream.accept_waveform( | ||
| 251 | + sample_rate=g_sample_rate, waveform=vad.front.samples | ||
| 252 | + ) | ||
| 253 | + vad.pop() | ||
| 254 | + stream.input_finished() | ||
| 255 | + | ||
| 256 | + print("Computing", end="") | ||
| 257 | + embedding = extractor.compute(stream) | ||
| 258 | + embedding = np.array(embedding) | ||
| 259 | + name = manager.search(embedding, threshold=args.threshold) | ||
| 260 | + if not name: | ||
| 261 | + name = "unknown" | ||
| 262 | + print(f"\r{idx}: Predicted name: {name}") | ||
| 263 | + idx += 1 | ||
| 264 | + | ||
| 265 | + | ||
| 266 | +if __name__ == "__main__": | ||
| 267 | + try: | ||
| 268 | + main() | ||
| 269 | + except KeyboardInterrupt: | ||
| 270 | + print("\nCaught Ctrl + C. Exiting") |
| 1 | #!/usr/bin/env python3 | 1 | #!/usr/bin/env python3 |
| 2 | 2 | ||
| 3 | """ | 3 | """ |
| 4 | -This script shows how to use Python APIs for speaker identification. | 4 | +This script shows how to use Python APIs for speaker identification with |
| 5 | +a microphone. | ||
| 5 | 6 | ||
| 6 | Usage: | 7 | Usage: |
| 7 | 8 | ||
| @@ -43,6 +44,7 @@ python3 ./python-api-examples/speaker-identification.py \ | @@ -43,6 +44,7 @@ python3 ./python-api-examples/speaker-identification.py \ | ||
| 43 | """ | 44 | """ |
| 44 | import argparse | 45 | import argparse |
| 45 | import queue | 46 | import queue |
| 47 | +import sys | ||
| 46 | import threading | 48 | import threading |
| 47 | from collections import defaultdict | 49 | from collections import defaultdict |
| 48 | from pathlib import Path | 50 | from pathlib import Path |
| @@ -151,7 +153,7 @@ def compute_speaker_embedding( | @@ -151,7 +153,7 @@ def compute_speaker_embedding( | ||
| 151 | filenames: List[str], | 153 | filenames: List[str], |
| 152 | extractor: sherpa_onnx.SpeakerEmbeddingExtractor, | 154 | extractor: sherpa_onnx.SpeakerEmbeddingExtractor, |
| 153 | ) -> np.ndarray: | 155 | ) -> np.ndarray: |
| 154 | - assert len(filenames) > 0, f"filenames is empty" | 156 | + assert len(filenames) > 0, "filenames is empty" |
| 155 | 157 | ||
| 156 | ans = None | 158 | ans = None |
| 157 | for filename in filenames: | 159 | for filename in filenames: |
| @@ -215,7 +217,7 @@ def main(): | @@ -215,7 +217,7 @@ def main(): | ||
| 215 | global g_stop | 217 | global g_stop |
| 216 | global g_read_mic_thread | 218 | global g_read_mic_thread |
| 217 | while True: | 219 | while True: |
| 218 | - key = input("Press enter to start recording") | 220 | + key = input("Press Enter to start recording") |
| 219 | if key.lower() in ("q", "quit"): | 221 | if key.lower() in ("q", "quit"): |
| 220 | g_stop = True | 222 | g_stop = True |
| 221 | break | 223 | break |
| @@ -224,7 +226,7 @@ def main(): | @@ -224,7 +226,7 @@ def main(): | ||
| 224 | g_buffer.queue.clear() | 226 | g_buffer.queue.clear() |
| 225 | g_read_mic_thread = threading.Thread(target=read_mic) | 227 | g_read_mic_thread = threading.Thread(target=read_mic) |
| 226 | g_read_mic_thread.start() | 228 | g_read_mic_thread.start() |
| 227 | - input("Press enter to stop recording") | 229 | + input("Press Enter to stop recording") |
| 228 | g_stop = True | 230 | g_stop = True |
| 229 | g_read_mic_thread.join() | 231 | g_read_mic_thread.join() |
| 230 | print("Compute embedding") | 232 | print("Compute embedding") |
-
请 注册 或 登录 后发表评论