Fangjun Kuang
Committed by GitHub

Add Python API examples for speaker recognition with VAD and ASR. (#532)

#!/usr/bin/env python3
"""
This script shows how to use Python APIs for speaker identification with
a microphone, a VAD model, and a non-streaming ASR model.
Please see also ./generate-subtitles.py
Usage:
(1) Prepare a text file containing speaker related files.
Each line in the text file contains two columns. The first column is the
speaker name, while the second column contains the wave file of the speaker.
If the text file contains multiple wave files for the same speaker, then the
embeddings of these files are averaged.
An example text file is given below:
foo /path/to/a.wav
bar /path/to/b.wav
foo /path/to/c.wav
foobar /path/to/d.wav
Each wave file should contain only a single channel; the sample format
should be int16_t; the sample rate can be arbitrary.
(2) Download a model for computing speaker embeddings
Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models
to download a model. An example is given below:
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/wespeaker_zh_cnceleb_resnet34.onnx
Note that `zh` means Chinese, while `en` means English.
(3) Download the VAD model
Please visit
https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx
(4) Please refer to ./generate-subtitles.py
to download a non-streaming ASR model.
(5) Run this script
Assume the filename of the text file is speaker.txt.
python3 ./python-api-examples/speaker-identification-with-vad.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--speaker-file ./speaker.txt \
--model ./wespeaker_zh_cnceleb_resnet34.onnx
"""
import argparse
import sys
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import sherpa_onnx
import torchaudio
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
g_sample_rate = 16000
def register_non_streaming_asr_model_args(parser):
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder",
default="",
type=str,
help="Path to the transducer encoder model",
)
parser.add_argument(
"--decoder",
default="",
type=str,
help="Path to the transducer decoder model",
)
parser.add_argument(
"--joiner",
default="",
type=str,
help="Path to the transducer joiner model",
)
parser.add_argument(
"--paraformer",
default="",
type=str,
help="Path to the model.onnx from Paraformer",
)
parser.add_argument(
"--wenet-ctc",
default="",
type=str,
help="Path to the CTC model.onnx from WeNet",
)
parser.add_argument(
"--whisper-encoder",
default="",
type=str,
help="Path to whisper encoder model",
)
parser.add_argument(
"--whisper-decoder",
default="",
type=str,
help="Path to whisper decoder model",
)
parser.add_argument(
"--whisper-language",
default="",
type=str,
help="""It specifies the spoken language in the input file.
Example values: en, fr, de, zh, jp.
Available languages for multilingual models can be found at
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
If not specified, we infer the language from the input audio file.
""",
)
parser.add_argument(
"--whisper-task",
default="transcribe",
choices=["transcribe", "translate"],
type=str,
help="""For multilingual models, if you specify translate, the output
will be in English.
""",
)
parser.add_argument(
"--whisper-tail-paddings",
default=-1,
type=int,
help="""Number of tail padding frames.
We have removed the 30-second constraint from whisper, so you need to
choose the amount of tail padding frames by yourself.
Use -1 to use a default value for tail padding.
""",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Valid values are greedy_search and modified_beam_search.
modified_beam_search is valid only for transducer models.
""",
)
parser.add_argument(
"--feature-dim",
type=int,
default=80,
help="Feature dimension. Must match the one expected by the model",
)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
register_non_streaming_asr_model_args(parser)
parser.add_argument(
"--speaker-file",
type=str,
required=True,
help="""Path to the speaker file. Read the help doc at the beginning of this
file for the format.""",
)
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to the speaker embedding model file.",
)
parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)
parser.add_argument("--threshold", type=float, default=0.6)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="True to show debug messages",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
return parser.parse_args()
def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)
def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
if args.encoder:
assert len(args.paraformer) == 0, args.paraformer
assert len(args.wenet_ctc) == 0, args.wenet_ctc
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.paraformer:
assert len(args.wenet_ctc) == 0, args.wenet_ctc
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert_file_exists(args.paraformer)
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=args.paraformer,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=g_sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.wenet_ctc:
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder
assert_file_exists(args.wenet_ctc)
recognizer = sherpa_onnx.OfflineRecognizer.from_wenet_ctc(
model=args.wenet_ctc,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.whisper_encoder:
assert_file_exists(args.whisper_encoder)
assert_file_exists(args.whisper_decoder)
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
encoder=args.whisper_encoder,
decoder=args.whisper_decoder,
tokens=args.tokens,
num_threads=args.num_threads,
decoding_method=args.decoding_method,
debug=args.debug,
language=args.whisper_language,
task=args.whisper_task,
tail_paddings=args.whisper_tail_paddings,
)
else:
raise ValueError("Please specify at least one model")
return recognizer
def load_speaker_embedding_model(args):
config = sherpa_onnx.SpeakerEmbeddingExtractorConfig(
model=args.model,
num_threads=args.num_threads,
debug=args.debug,
provider=args.provider,
)
if not config.validate():
raise ValueError(f"Invalid config. {config}")
extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config)
return extractor
def load_speaker_file(args) -> Dict[str, List[str]]:
if not Path(args.speaker_file).is_file():
raise ValueError(f"--speaker-file {args.speaker_file} does not exist")
ans = defaultdict(list)
with open(args.speaker_file) as f:
for line in f:
line = line.strip()
if not line:
continue
fields = line.split()
if len(fields) != 2:
raise ValueError(f"Invalid line: {line}. Fields: {fields}")
speaker_name, filename = fields
ans[speaker_name].append(filename)
return ans
def load_audio(filename: str) -> Tuple[np.ndarray, int]:
samples, sample_rate = torchaudio.load(filename)
return samples[0].contiguous().numpy(), sample_rate
def compute_speaker_embedding(
filenames: List[str],
extractor: sherpa_onnx.SpeakerEmbeddingExtractor,
) -> np.ndarray:
assert len(filenames) > 0, "filenames is empty"
ans = None
for filename in filenames:
print(f"processing {filename}")
samples, sample_rate = load_audio(filename)
stream = extractor.create_stream()
stream.accept_waveform(sample_rate=sample_rate, waveform=samples)
stream.input_finished()
assert extractor.is_ready(stream)
embedding = extractor.compute(stream)
embedding = np.array(embedding)
if ans is None:
ans = embedding
else:
ans += embedding
return ans / len(filenames)
def main():
args = get_args()
print(args)
recognizer = create_recognizer(args)
extractor = load_speaker_embedding_model(args)
speaker_file = load_speaker_file(args)
manager = sherpa_onnx.SpeakerEmbeddingManager(extractor.dim)
for name, filename_list in speaker_file.items():
embedding = compute_speaker_embedding(
filenames=filename_list,
extractor=extractor,
)
status = manager.add(name, embedding)
if not status:
raise RuntimeError(f"Failed to register speaker {name}")
vad_config = sherpa_onnx.VadModelConfig()
vad_config.silero_vad.model = args.silero_vad_model
vad_config.silero_vad.min_silence_duration = 0.25
vad_config.silero_vad.min_speech_duration = 0.25
vad_config.sample_rate = g_sample_rate
window_size = vad_config.silero_vad.window_size
vad = sherpa_onnx.VoiceActivityDetector(vad_config, buffer_size_in_seconds=100)
samples_per_read = int(0.1 * g_sample_rate) # 0.1 second = 100 ms
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)
print(devices)
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
print("Started! Please speak")
idx = 0
buffer = []
with sd.InputStream(channels=1, dtype="float32", samplerate=g_sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
buffer = np.concatenate([buffer, samples])
while len(buffer) > window_size:
vad.accept_waveform(buffer[:window_size])
buffer = buffer[window_size:]
while not vad.empty():
if len(vad.front.samples) < 0.5 * g_sample_rate:
# this segment is too short, skip it
vad.pop()
continue
stream = extractor.create_stream()
stream.accept_waveform(
sample_rate=g_sample_rate, waveform=vad.front.samples
)
stream.input_finished()
embedding = extractor.compute(stream)
embedding = np.array(embedding)
name = manager.search(embedding, threshold=args.threshold)
if not name:
name = "unknown"
# Now for non-streaming ASR
asr_stream = recognizer.create_stream()
asr_stream.accept_waveform(
sample_rate=g_sample_rate, waveform=vad.front.samples
)
recognizer.decode_stream(asr_stream)
text = asr_stream.result.text
vad.pop()
print(f"\r{idx}-{name}: {text}")
idx += 1
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")
... ...
#!/usr/bin/env python3
"""
This script shows how to use Python APIs for speaker identification with
a microphone and a VAD model
Usage:
(1) Prepare a text file containing speaker related files.
Each line in the text file contains two columns. The first column is the
speaker name, while the second column contains the wave file of the speaker.
If the text file contains multiple wave files for the same speaker, then the
embeddings of these files are averaged.
An example text file is given below:
foo /path/to/a.wav
bar /path/to/b.wav
foo /path/to/c.wav
foobar /path/to/d.wav
Each wave file should contain only a single channel; the sample format
should be int16_t; the sample rate can be arbitrary.
(2) Download a model for computing speaker embeddings
Please visit
https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models
to download a model. An example is given below:
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/wespeaker_zh_cnceleb_resnet34.onnx
Note that `zh` means Chinese, while `en` means English.
(3) Download the VAD model
Please visit
https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx
(4) Run this script
Assume the filename of the text file is speaker.txt.
python3 ./python-api-examples/speaker-identification-with-vad.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--speaker-file ./speaker.txt \
--model ./wespeaker_zh_cnceleb_resnet34.onnx
"""
import argparse
import sys
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import sherpa_onnx
import torchaudio
try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--speaker-file",
type=str,
required=True,
help="""Path to the speaker file. Read the help doc at the beginning of this
file for the format.""",
)
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to the speaker embedding model file.",
)
parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)
parser.add_argument("--threshold", type=float, default=0.6)
parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="True to show debug messages",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
return parser.parse_args()
def load_speaker_embedding_model(args):
config = sherpa_onnx.SpeakerEmbeddingExtractorConfig(
model=args.model,
num_threads=args.num_threads,
debug=args.debug,
provider=args.provider,
)
if not config.validate():
raise ValueError(f"Invalid config. {config}")
extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config)
return extractor
def load_speaker_file(args) -> Dict[str, List[str]]:
if not Path(args.speaker_file).is_file():
raise ValueError(f"--speaker-file {args.speaker_file} does not exist")
ans = defaultdict(list)
with open(args.speaker_file) as f:
for line in f:
line = line.strip()
if not line:
continue
fields = line.split()
if len(fields) != 2:
raise ValueError(f"Invalid line: {line}. Fields: {fields}")
speaker_name, filename = fields
ans[speaker_name].append(filename)
return ans
def load_audio(filename: str) -> Tuple[np.ndarray, int]:
samples, sample_rate = torchaudio.load(filename)
return samples[0].contiguous().numpy(), sample_rate
def compute_speaker_embedding(
filenames: List[str],
extractor: sherpa_onnx.SpeakerEmbeddingExtractor,
) -> np.ndarray:
assert len(filenames) > 0, "filenames is empty"
ans = None
for filename in filenames:
print(f"processing {filename}")
samples, sample_rate = load_audio(filename)
stream = extractor.create_stream()
stream.accept_waveform(sample_rate=sample_rate, waveform=samples)
stream.input_finished()
assert extractor.is_ready(stream)
embedding = extractor.compute(stream)
embedding = np.array(embedding)
if ans is None:
ans = embedding
else:
ans += embedding
return ans / len(filenames)
g_sample_rate = 16000
def main():
args = get_args()
print(args)
extractor = load_speaker_embedding_model(args)
speaker_file = load_speaker_file(args)
manager = sherpa_onnx.SpeakerEmbeddingManager(extractor.dim)
for name, filename_list in speaker_file.items():
embedding = compute_speaker_embedding(
filenames=filename_list,
extractor=extractor,
)
status = manager.add(name, embedding)
if not status:
raise RuntimeError(f"Failed to register speaker {name}")
vad_config = sherpa_onnx.VadModelConfig()
vad_config.silero_vad.model = args.silero_vad_model
vad_config.silero_vad.min_silence_duration = 0.25
vad_config.silero_vad.min_speech_duration = 0.25
vad_config.sample_rate = g_sample_rate
window_size = vad_config.silero_vad.window_size
vad = sherpa_onnx.VoiceActivityDetector(vad_config, buffer_size_in_seconds=100)
samples_per_read = int(0.1 * g_sample_rate) # 0.1 second = 100 ms
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)
print(devices)
default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')
print("Started! Please speak")
idx = 0
buffer = []
with sd.InputStream(channels=1, dtype="float32", samplerate=g_sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)
buffer = np.concatenate([buffer, samples])
while len(buffer) > window_size:
vad.accept_waveform(buffer[:window_size])
buffer = buffer[window_size:]
while not vad.empty():
if len(vad.front.samples) < 0.5 * g_sample_rate:
# this segment is too short, skip it
vad.pop()
continue
stream = extractor.create_stream()
stream.accept_waveform(
sample_rate=g_sample_rate, waveform=vad.front.samples
)
vad.pop()
stream.input_finished()
print("Computing", end="")
embedding = extractor.compute(stream)
embedding = np.array(embedding)
name = manager.search(embedding, threshold=args.threshold)
if not name:
name = "unknown"
print(f"\r{idx}: Predicted name: {name}")
idx += 1
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")
... ...
#!/usr/bin/env python3
"""
This script shows how to use Python APIs for speaker identification.
This script shows how to use Python APIs for speaker identification with
a microphone.
Usage:
... ... @@ -43,6 +44,7 @@ python3 ./python-api-examples/speaker-identification.py \
"""
import argparse
import queue
import sys
import threading
from collections import defaultdict
from pathlib import Path
... ... @@ -151,7 +153,7 @@ def compute_speaker_embedding(
filenames: List[str],
extractor: sherpa_onnx.SpeakerEmbeddingExtractor,
) -> np.ndarray:
assert len(filenames) > 0, f"filenames is empty"
assert len(filenames) > 0, "filenames is empty"
ans = None
for filename in filenames:
... ... @@ -215,7 +217,7 @@ def main():
global g_stop
global g_read_mic_thread
while True:
key = input("Press enter to start recording")
key = input("Press Enter to start recording")
if key.lower() in ("q", "quit"):
g_stop = True
break
... ... @@ -224,7 +226,7 @@ def main():
g_buffer.queue.clear()
g_read_mic_thread = threading.Thread(target=read_mic)
g_read_mic_thread.start()
input("Press enter to stop recording")
input("Press Enter to stop recording")
g_stop = True
g_read_mic_thread.join()
print("Compute embedding")
... ...