正在显示
3 个修改的文件
包含
263 行增加
和
0 行删除
| @@ -158,6 +158,7 @@ def main(): | @@ -158,6 +158,7 @@ def main(): | ||
| 158 | meta_data = { | 158 | meta_data = { |
| 159 | "lfr_window_size": lfr_window_size, | 159 | "lfr_window_size": lfr_window_size, |
| 160 | "lfr_window_shift": lfr_window_shift, | 160 | "lfr_window_shift": lfr_window_shift, |
| 161 | + "normalize_samples": 0, # input should be in the range [-32768, 32767] | ||
| 161 | "neg_mean": neg_mean, | 162 | "neg_mean": neg_mean, |
| 162 | "inv_stddev": inv_stddev, | 163 | "inv_stddev": inv_stddev, |
| 163 | "model_type": "sense_voice_ctc", | 164 | "model_type": "sense_voice_ctc", |
| @@ -35,3 +35,28 @@ echo "pwd: $PWD" | @@ -35,3 +35,28 @@ echo "pwd: $PWD" | ||
| 35 | ./show-info.py | 35 | ./show-info.py |
| 36 | 36 | ||
| 37 | ls -lh | 37 | ls -lh |
| 38 | + | ||
| 39 | +# Download test wavs | ||
| 40 | +curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/en.wav | ||
| 41 | +curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/zh.wav | ||
| 42 | +curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/ja.wav | ||
| 43 | +curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/ko.wav | ||
| 44 | +curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/yue.wav | ||
| 45 | + | ||
| 46 | +for m in model.onnx model.int8.onnx; do | ||
| 47 | + for w in en zh ja ko yue; do | ||
| 48 | + echo "----------test $m $w.wav----------" | ||
| 49 | + | ||
| 50 | + echo "without inverse text normalization, lang auto" | ||
| 51 | + ./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 0 | ||
| 52 | + | ||
| 53 | + echo "with inverse text normalization, lang auto" | ||
| 54 | + ./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 1 | ||
| 55 | + | ||
| 56 | + echo "without inverse text normalization, lang $w" | ||
| 57 | + ./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 0 --lang $w | ||
| 58 | + | ||
| 59 | + echo "with inverse text normalization, lang $w" | ||
| 60 | + ./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 1 --lang $w | ||
| 61 | + done | ||
| 62 | +done |
scripts/sense-voice/test.py
0 → 100755
| 1 | +#!/usr/bin/env python3 | ||
| 2 | +# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) | ||
| 3 | + | ||
| 4 | +import argparse | ||
| 5 | +from typing import Tuple | ||
| 6 | + | ||
| 7 | +import kaldi_native_fbank as knf | ||
| 8 | +import numpy as np | ||
| 9 | +import onnxruntime | ||
| 10 | +import onnxruntime as ort | ||
| 11 | +import soundfile as sf | ||
| 12 | +import torch | ||
| 13 | + | ||
| 14 | + | ||
| 15 | +def get_args(): | ||
| 16 | + parser = argparse.ArgumentParser( | ||
| 17 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
| 18 | + ) | ||
| 19 | + | ||
| 20 | + parser.add_argument( | ||
| 21 | + "--model", | ||
| 22 | + type=str, | ||
| 23 | + required=True, | ||
| 24 | + help="Path to model.onnx", | ||
| 25 | + ) | ||
| 26 | + | ||
| 27 | + parser.add_argument( | ||
| 28 | + "--tokens", | ||
| 29 | + type=str, | ||
| 30 | + required=True, | ||
| 31 | + help="Path to tokens.txt", | ||
| 32 | + ) | ||
| 33 | + | ||
| 34 | + parser.add_argument( | ||
| 35 | + "--wave", | ||
| 36 | + type=str, | ||
| 37 | + required=True, | ||
| 38 | + help="The input wave to be recognized", | ||
| 39 | + ) | ||
| 40 | + | ||
| 41 | + parser.add_argument( | ||
| 42 | + "--language", | ||
| 43 | + type=str, | ||
| 44 | + default="auto", | ||
| 45 | + help="the language of the input wav file. Supported values: zh, en, ja, ko, yue, auto", | ||
| 46 | + ) | ||
| 47 | + | ||
| 48 | + parser.add_argument( | ||
| 49 | + "--use-itn", | ||
| 50 | + type=int, | ||
| 51 | + default=0, | ||
| 52 | + help="1 to use inverse text normalization. 0 to not use inverse text normalization", | ||
| 53 | + ) | ||
| 54 | + | ||
| 55 | + return parser.parse_args() | ||
| 56 | + | ||
| 57 | + | ||
| 58 | +class OnnxModel: | ||
| 59 | + def __init__(self, filename): | ||
| 60 | + session_opts = ort.SessionOptions() | ||
| 61 | + session_opts.inter_op_num_threads = 1 | ||
| 62 | + session_opts.intra_op_num_threads = 1 | ||
| 63 | + | ||
| 64 | + self.session_opts = session_opts | ||
| 65 | + | ||
| 66 | + self.model = ort.InferenceSession( | ||
| 67 | + filename, | ||
| 68 | + sess_options=self.session_opts, | ||
| 69 | + providers=["CPUExecutionProvider"], | ||
| 70 | + ) | ||
| 71 | + | ||
| 72 | + meta = self.model.get_modelmeta().custom_metadata_map | ||
| 73 | + | ||
| 74 | + self.window_size = int(meta["lfr_window_size"]) # lfr_m | ||
| 75 | + self.window_shift = int(meta["lfr_window_shift"]) # lfr_n | ||
| 76 | + | ||
| 77 | + lang_zh = int(meta["lang_zh"]) | ||
| 78 | + lang_en = int(meta["lang_en"]) | ||
| 79 | + lang_ja = int(meta["lang_ja"]) | ||
| 80 | + lang_ko = int(meta["lang_ko"]) | ||
| 81 | + lang_auto = int(meta["lang_auto"]) | ||
| 82 | + | ||
| 83 | + self.lang_id = { | ||
| 84 | + "zh": lang_zh, | ||
| 85 | + "en": lang_en, | ||
| 86 | + "ja": lang_ja, | ||
| 87 | + "ko": lang_ko, | ||
| 88 | + "auto": lang_auto, | ||
| 89 | + } | ||
| 90 | + self.with_itn = int(meta["with_itn"]) | ||
| 91 | + self.without_itn = int(meta["without_itn"]) | ||
| 92 | + | ||
| 93 | + neg_mean = meta["neg_mean"].split(",") | ||
| 94 | + neg_mean = list(map(lambda x: float(x), neg_mean)) | ||
| 95 | + | ||
| 96 | + inv_stddev = meta["inv_stddev"].split(",") | ||
| 97 | + inv_stddev = list(map(lambda x: float(x), inv_stddev)) | ||
| 98 | + | ||
| 99 | + self.neg_mean = np.array(neg_mean, dtype=np.float32) | ||
| 100 | + self.inv_stddev = np.array(inv_stddev, dtype=np.float32) | ||
| 101 | + | ||
| 102 | + def __call__(self, x, x_length, language, text_norm): | ||
| 103 | + logits = self.model.run( | ||
| 104 | + [ | ||
| 105 | + self.model.get_outputs()[0].name, | ||
| 106 | + ], | ||
| 107 | + { | ||
| 108 | + self.model.get_inputs()[0].name: x.numpy(), | ||
| 109 | + self.model.get_inputs()[1].name: x_length.numpy(), | ||
| 110 | + self.model.get_inputs()[2].name: language.numpy(), | ||
| 111 | + self.model.get_inputs()[3].name: text_norm.numpy(), | ||
| 112 | + }, | ||
| 113 | + )[0] | ||
| 114 | + | ||
| 115 | + return torch.from_numpy(logits) | ||
| 116 | + | ||
| 117 | + | ||
| 118 | +def load_audio(filename: str) -> Tuple[np.ndarray, int]: | ||
| 119 | + data, sample_rate = sf.read( | ||
| 120 | + filename, | ||
| 121 | + always_2d=True, | ||
| 122 | + dtype="float32", | ||
| 123 | + ) | ||
| 124 | + data = data[:, 0] # use only the first channel | ||
| 125 | + samples = np.ascontiguousarray(data) | ||
| 126 | + return samples, sample_rate | ||
| 127 | + | ||
| 128 | + | ||
| 129 | +def load_tokens(filename): | ||
| 130 | + ans = dict() | ||
| 131 | + i = 0 | ||
| 132 | + with open(filename, encoding="utf-8") as f: | ||
| 133 | + for line in f: | ||
| 134 | + ans[i] = line.strip().split()[0] | ||
| 135 | + i += 1 | ||
| 136 | + return ans | ||
| 137 | + | ||
| 138 | + | ||
| 139 | +def compute_feat( | ||
| 140 | + samples, | ||
| 141 | + sample_rate, | ||
| 142 | + neg_mean: np.ndarray, | ||
| 143 | + inv_stddev: np.ndarray, | ||
| 144 | + window_size: int = 7, # lfr_m | ||
| 145 | + window_shift: int = 6, # lfr_n | ||
| 146 | +): | ||
| 147 | + opts = knf.FbankOptions() | ||
| 148 | + opts.frame_opts.dither = 0 | ||
| 149 | + opts.frame_opts.snip_edges = False | ||
| 150 | + opts.frame_opts.window_type = "hamming" | ||
| 151 | + opts.frame_opts.samp_freq = sample_rate | ||
| 152 | + opts.mel_opts.num_bins = 80 | ||
| 153 | + | ||
| 154 | + online_fbank = knf.OnlineFbank(opts) | ||
| 155 | + online_fbank.accept_waveform(sample_rate, (samples * 32768).tolist()) | ||
| 156 | + online_fbank.input_finished() | ||
| 157 | + | ||
| 158 | + features = np.stack( | ||
| 159 | + [online_fbank.get_frame(i) for i in range(online_fbank.num_frames_ready)] | ||
| 160 | + ) | ||
| 161 | + assert features.data.contiguous is True | ||
| 162 | + assert features.dtype == np.float32, features.dtype | ||
| 163 | + | ||
| 164 | + T = (features.shape[0] - window_size) // window_shift + 1 | ||
| 165 | + features = np.lib.stride_tricks.as_strided( | ||
| 166 | + features, | ||
| 167 | + shape=(T, features.shape[1] * window_size), | ||
| 168 | + strides=((window_shift * features.shape[1]) * 4, 4), | ||
| 169 | + ) | ||
| 170 | + | ||
| 171 | + features = (features + neg_mean) * inv_stddev | ||
| 172 | + | ||
| 173 | + return features | ||
| 174 | + | ||
| 175 | + | ||
| 176 | +def main(): | ||
| 177 | + args = get_args() | ||
| 178 | + print(vars(args)) | ||
| 179 | + samples, sample_rate = load_audio(args.wave) | ||
| 180 | + if sample_rate != 16000: | ||
| 181 | + import librosa | ||
| 182 | + | ||
| 183 | + samples = librosa.resample(samples, orig_sr=sample_rate, target_sr=16000) | ||
| 184 | + sample_rate = 16000 | ||
| 185 | + | ||
| 186 | + model = OnnxModel(filename=args.model) | ||
| 187 | + | ||
| 188 | + features = compute_feat( | ||
| 189 | + samples=samples, | ||
| 190 | + sample_rate=sample_rate, | ||
| 191 | + neg_mean=model.neg_mean, | ||
| 192 | + inv_stddev=model.inv_stddev, | ||
| 193 | + window_size=model.window_size, | ||
| 194 | + window_shift=model.window_shift, | ||
| 195 | + ) | ||
| 196 | + | ||
| 197 | + features = torch.from_numpy(features).unsqueeze(0) | ||
| 198 | + features_length = torch.tensor([features.size(1)], dtype=torch.int32) | ||
| 199 | + | ||
| 200 | + language = model.lang_id["auto"] | ||
| 201 | + if args.language in model.lang_id: | ||
| 202 | + language = model.lang_id[args.language] | ||
| 203 | + else: | ||
| 204 | + print(f"Invalid language: '{args.language}'") | ||
| 205 | + print("Use auto") | ||
| 206 | + | ||
| 207 | + if args.use_itn: | ||
| 208 | + text_norm = model.with_itn | ||
| 209 | + else: | ||
| 210 | + text_norm = model.without_itn | ||
| 211 | + | ||
| 212 | + language = torch.tensor([language], dtype=torch.int32) | ||
| 213 | + text_norm = torch.tensor([text_norm], dtype=torch.int32) | ||
| 214 | + | ||
| 215 | + logits = model( | ||
| 216 | + x=features, | ||
| 217 | + x_length=features_length, | ||
| 218 | + language=language, | ||
| 219 | + text_norm=text_norm, | ||
| 220 | + ) | ||
| 221 | + | ||
| 222 | + idx = logits.squeeze(0).argmax(dim=-1) | ||
| 223 | + # idx is of shape (T,) | ||
| 224 | + idx = torch.unique_consecutive(idx) | ||
| 225 | + | ||
| 226 | + blank_id = 0 | ||
| 227 | + idx = idx[idx != blank_id].tolist() | ||
| 228 | + | ||
| 229 | + tokens = load_tokens(args.tokens) | ||
| 230 | + text = "".join([tokens[i] for i in idx]) | ||
| 231 | + | ||
| 232 | + text = text.replace("▁", " ") | ||
| 233 | + print(text) | ||
| 234 | + | ||
| 235 | + | ||
| 236 | +if __name__ == "__main__": | ||
| 237 | + main() |
-
请 注册 或 登录 后发表评论