Fangjun Kuang
Committed by GitHub

test exported sense voice models (#1147)

... ... @@ -158,6 +158,7 @@ def main():
meta_data = {
"lfr_window_size": lfr_window_size,
"lfr_window_shift": lfr_window_shift,
"normalize_samples": 0, # input should be in the range [-32768, 32767]
"neg_mean": neg_mean,
"inv_stddev": inv_stddev,
"model_type": "sense_voice_ctc",
... ...
... ... @@ -35,3 +35,28 @@ echo "pwd: $PWD"
./show-info.py
ls -lh
# Download test wavs
curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/en.wav
curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/zh.wav
curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/ja.wav
curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/ko.wav
curl -SL -O https://huggingface.co/csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/resolve/main/test_wavs/yue.wav
for m in model.onnx model.int8.onnx; do
for w in en zh ja ko yue; do
echo "----------test $m $w.wav----------"
echo "without inverse text normalization, lang auto"
./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 0
echo "with inverse text normalization, lang auto"
./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 1
echo "without inverse text normalization, lang $w"
./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 0 --lang $w
echo "with inverse text normalization, lang $w"
./test.py --model $m --tokens ./tokens.txt --wav $w.wav --use-itn 1 --lang $w
done
done
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
from typing import Tuple
import kaldi_native_fbank as knf
import numpy as np
import onnxruntime
import onnxruntime as ort
import soundfile as sf
import torch
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to model.onnx",
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to tokens.txt",
)
parser.add_argument(
"--wave",
type=str,
required=True,
help="The input wave to be recognized",
)
parser.add_argument(
"--language",
type=str,
default="auto",
help="the language of the input wav file. Supported values: zh, en, ja, ko, yue, auto",
)
parser.add_argument(
"--use-itn",
type=int,
default=0,
help="1 to use inverse text normalization. 0 to not use inverse text normalization",
)
return parser.parse_args()
class OnnxModel:
def __init__(self, filename):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.model.get_modelmeta().custom_metadata_map
self.window_size = int(meta["lfr_window_size"]) # lfr_m
self.window_shift = int(meta["lfr_window_shift"]) # lfr_n
lang_zh = int(meta["lang_zh"])
lang_en = int(meta["lang_en"])
lang_ja = int(meta["lang_ja"])
lang_ko = int(meta["lang_ko"])
lang_auto = int(meta["lang_auto"])
self.lang_id = {
"zh": lang_zh,
"en": lang_en,
"ja": lang_ja,
"ko": lang_ko,
"auto": lang_auto,
}
self.with_itn = int(meta["with_itn"])
self.without_itn = int(meta["without_itn"])
neg_mean = meta["neg_mean"].split(",")
neg_mean = list(map(lambda x: float(x), neg_mean))
inv_stddev = meta["inv_stddev"].split(",")
inv_stddev = list(map(lambda x: float(x), inv_stddev))
self.neg_mean = np.array(neg_mean, dtype=np.float32)
self.inv_stddev = np.array(inv_stddev, dtype=np.float32)
def __call__(self, x, x_length, language, text_norm):
logits = self.model.run(
[
self.model.get_outputs()[0].name,
],
{
self.model.get_inputs()[0].name: x.numpy(),
self.model.get_inputs()[1].name: x_length.numpy(),
self.model.get_inputs()[2].name: language.numpy(),
self.model.get_inputs()[3].name: text_norm.numpy(),
},
)[0]
return torch.from_numpy(logits)
def load_audio(filename: str) -> Tuple[np.ndarray, int]:
data, sample_rate = sf.read(
filename,
always_2d=True,
dtype="float32",
)
data = data[:, 0] # use only the first channel
samples = np.ascontiguousarray(data)
return samples, sample_rate
def load_tokens(filename):
ans = dict()
i = 0
with open(filename, encoding="utf-8") as f:
for line in f:
ans[i] = line.strip().split()[0]
i += 1
return ans
def compute_feat(
samples,
sample_rate,
neg_mean: np.ndarray,
inv_stddev: np.ndarray,
window_size: int = 7, # lfr_m
window_shift: int = 6, # lfr_n
):
opts = knf.FbankOptions()
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.window_type = "hamming"
opts.frame_opts.samp_freq = sample_rate
opts.mel_opts.num_bins = 80
online_fbank = knf.OnlineFbank(opts)
online_fbank.accept_waveform(sample_rate, (samples * 32768).tolist())
online_fbank.input_finished()
features = np.stack(
[online_fbank.get_frame(i) for i in range(online_fbank.num_frames_ready)]
)
assert features.data.contiguous is True
assert features.dtype == np.float32, features.dtype
T = (features.shape[0] - window_size) // window_shift + 1
features = np.lib.stride_tricks.as_strided(
features,
shape=(T, features.shape[1] * window_size),
strides=((window_shift * features.shape[1]) * 4, 4),
)
features = (features + neg_mean) * inv_stddev
return features
def main():
args = get_args()
print(vars(args))
samples, sample_rate = load_audio(args.wave)
if sample_rate != 16000:
import librosa
samples = librosa.resample(samples, orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
model = OnnxModel(filename=args.model)
features = compute_feat(
samples=samples,
sample_rate=sample_rate,
neg_mean=model.neg_mean,
inv_stddev=model.inv_stddev,
window_size=model.window_size,
window_shift=model.window_shift,
)
features = torch.from_numpy(features).unsqueeze(0)
features_length = torch.tensor([features.size(1)], dtype=torch.int32)
language = model.lang_id["auto"]
if args.language in model.lang_id:
language = model.lang_id[args.language]
else:
print(f"Invalid language: '{args.language}'")
print("Use auto")
if args.use_itn:
text_norm = model.with_itn
else:
text_norm = model.without_itn
language = torch.tensor([language], dtype=torch.int32)
text_norm = torch.tensor([text_norm], dtype=torch.int32)
logits = model(
x=features,
x_length=features_length,
language=language,
text_norm=text_norm,
)
idx = logits.squeeze(0).argmax(dim=-1)
# idx is of shape (T,)
idx = torch.unique_consecutive(idx)
blank_id = 0
idx = idx[idx != blank_id].tolist()
tokens = load_tokens(args.tokens)
text = "".join([tokens[i] for i in idx])
text = text.replace("▁", " ")
print(text)
if __name__ == "__main__":
main()
... ...