show-onnx-transudcer.py
3.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import onnxruntime
def show(filename):
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
sess = onnxruntime.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
def main():
print("=========encoder==========")
show("./encoder.onnx")
print("=========decoder==========")
show("./decoder.onnx")
print("=========joiner==========")
show("./joiner.onnx")
if __name__ == "__main__":
main()
"""
=========encoder==========
NodeArg(name='audio_signal', type='tensor(float)', shape=['audio_signal_dynamic_axes_1', 80, 'audio_signal_dynamic_axes_2'])
NodeArg(name='length', type='tensor(int64)', shape=['length_dynamic_axes_1'])
NodeArg(name='cache_last_channel', type='tensor(float)', shape=['cache_last_channel_dynamic_axes_1', 17, 'cache_last_channel_dynamic_axes_2', 512])
NodeArg(name='cache_last_time', type='tensor(float)', shape=['cache_last_time_dynamic_axes_1', 17, 512, 'cache_last_time_dynamic_axes_2'])
NodeArg(name='cache_last_channel_len', type='tensor(int64)', shape=['cache_last_channel_len_dynamic_axes_1'])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 512, 'outputs_dynamic_axes_2'])
NodeArg(name='encoded_lengths', type='tensor(int64)', shape=['encoded_lengths_dynamic_axes_1'])
NodeArg(name='cache_last_channel_next', type='tensor(float)', shape=['cache_last_channel_next_dynamic_axes_1', 17, 'cache_last_channel_next_dynamic_axes_2', 512])
NodeArg(name='cache_last_time_next', type='tensor(float)', shape=['cache_last_time_next_dynamic_axes_1', 17, 512, 'cache_last_time_next_dynamic_axes_2'])
NodeArg(name='cache_last_channel_next_len', type='tensor(int64)', shape=['cache_last_channel_next_len_dynamic_axes_1'])
=========decoder==========
NodeArg(name='targets', type='tensor(int32)', shape=['targets_dynamic_axes_1', 'targets_dynamic_axes_2'])
NodeArg(name='target_length', type='tensor(int32)', shape=['target_length_dynamic_axes_1'])
NodeArg(name='states.1', type='tensor(float)', shape=[1, 'states.1_dim_1', 640])
NodeArg(name='onnx::LSTM_3', type='tensor(float)', shape=[1, 1, 640])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 640, 'outputs_dynamic_axes_2'])
NodeArg(name='prednet_lengths', type='tensor(int32)', shape=['prednet_lengths_dynamic_axes_1'])
NodeArg(name='states', type='tensor(float)', shape=[1, 'states_dynamic_axes_1', 640])
NodeArg(name='74', type='tensor(float)', shape=[1, 'LSTM74_dim_1', 640])
=========joiner==========
NodeArg(name='encoder_outputs', type='tensor(float)', shape=['encoder_outputs_dynamic_axes_1', 512, 'encoder_outputs_dynamic_axes_2'])
NodeArg(name='decoder_outputs', type='tensor(float)', shape=['decoder_outputs_dynamic_axes_1', 640, 'decoder_outputs_dynamic_axes_2'])
-----
NodeArg(name='outputs', type='tensor(float)', shape=['outputs_dynamic_axes_1', 'outputs_dynamic_axes_2', 'outputs_dynamic_axes_3', 1025])
"""