test_180m_flash.py
9.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
import time
from pathlib import Path
from typing import List
import kaldi_native_fbank as knf
import librosa
import numpy as np
import onnxruntime as ort
import soundfile as sf
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--encoder", type=str, required=True, help="Path to encoder.onnx"
)
parser.add_argument(
"--decoder", type=str, required=True, help="Path to decoder.onnx"
)
parser.add_argument("--tokens", type=str, required=True, help="Path to tokens.txt")
parser.add_argument(
"--source-lang",
type=str,
help="Language of the input wav. Valid values are: en, de, es, fr",
)
parser.add_argument(
"--target-lang",
type=str,
help="Language of the recognition result. Valid values are: en, de, es, fr",
)
parser.add_argument(
"--use-pnc",
type=int,
default=1,
help="1 to enable cases and punctuations. 0 to disable that",
)
parser.add_argument("--wav", type=str, required=True, help="Path to test.wav")
return parser.parse_args()
def display(sess, model):
print(f"=========={model} Input==========")
for i in sess.get_inputs():
print(i)
print(f"=========={model }Output==========")
for i in sess.get_outputs():
print(i)
class OnnxModel:
def __init__(
self,
encoder: str,
decoder: str,
):
self.init_encoder(encoder)
display(self.encoder, "encoder")
self.init_decoder(decoder)
display(self.decoder, "decoder")
def init_encoder(self, encoder):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.encoder = ort.InferenceSession(
encoder,
sess_options=session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.encoder.get_modelmeta().custom_metadata_map
self.normalize_type = meta["normalize_type"]
print(meta)
def init_decoder(self, decoder):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.decoder = ort.InferenceSession(
decoder,
sess_options=session_opts,
providers=["CPUExecutionProvider"],
)
def run_encoder(self, x: np.ndarray, x_lens: np.ndarray):
"""
Args:
x: (N, T, C), np.float
x_lens: (N,), np.int64
Returns:
enc_states: (N, T, C)
enc_lens: (N,), np.int64
enc_masks: (N, T), np.bool
"""
enc_states, enc_lens, enc_masks = self.encoder.run(
[
self.encoder.get_outputs()[0].name,
self.encoder.get_outputs()[1].name,
self.encoder.get_outputs()[2].name,
],
{
self.encoder.get_inputs()[0].name: x,
self.encoder.get_inputs()[1].name: x_lens,
},
)
return enc_states, enc_lens, enc_masks
def run_decoder(
self,
decoder_input_ids: np.ndarray,
decoder_mems_list: List[np.ndarray],
enc_states: np.ndarray,
enc_mask: np.ndarray,
):
"""
Args:
decoder_input_ids: (N, num_tokens), int32
decoder_mems_list: a list of tensors, each of which is (N, num_tokens, C)
enc_states: (N, T, C), float
enc_mask: (N, T), bool
Returns:
logits: (1, 1, vocab_size), float
new_decoder_mems_list:
"""
(logits, *new_decoder_mems_list) = self.decoder.run(
[
self.decoder.get_outputs()[0].name,
self.decoder.get_outputs()[1].name,
self.decoder.get_outputs()[2].name,
self.decoder.get_outputs()[3].name,
self.decoder.get_outputs()[4].name,
self.decoder.get_outputs()[5].name,
self.decoder.get_outputs()[6].name,
],
{
self.decoder.get_inputs()[0].name: decoder_input_ids,
self.decoder.get_inputs()[1].name: decoder_mems_list[0],
self.decoder.get_inputs()[2].name: decoder_mems_list[1],
self.decoder.get_inputs()[3].name: decoder_mems_list[2],
self.decoder.get_inputs()[4].name: decoder_mems_list[3],
self.decoder.get_inputs()[5].name: decoder_mems_list[4],
self.decoder.get_inputs()[6].name: decoder_mems_list[5],
self.decoder.get_inputs()[7].name: enc_states,
self.decoder.get_inputs()[8].name: enc_mask,
},
)
return logits, new_decoder_mems_list
def create_fbank():
opts = knf.FbankOptions()
opts.frame_opts.dither = 0
opts.frame_opts.remove_dc_offset = False
opts.frame_opts.window_type = "hann"
opts.mel_opts.low_freq = 0
opts.mel_opts.num_bins = 128
opts.mel_opts.is_librosa = True
fbank = knf.OnlineFbank(opts)
return fbank
def compute_features(audio, fbank):
assert len(audio.shape) == 1, audio.shape
fbank.accept_waveform(16000, audio)
ans = []
processed = 0
while processed < fbank.num_frames_ready:
ans.append(np.array(fbank.get_frame(processed)))
processed += 1
ans = np.stack(ans)
return ans
def main():
args = get_args()
assert Path(args.encoder).is_file(), args.encoder
assert Path(args.decoder).is_file(), args.decoder
assert Path(args.tokens).is_file(), args.tokens
assert Path(args.wav).is_file(), args.wav
print(vars(args))
id2token = dict()
token2id = dict()
with open(args.tokens, encoding="utf-8") as f:
for line in f:
fields = line.split()
if len(fields) == 2:
t, idx = fields[0], int(fields[1])
if line[0] == " ":
t = " " + t
else:
t = " "
idx = int(fields[0])
id2token[idx] = t
token2id[t] = idx
model = OnnxModel(args.encoder, args.decoder)
fbank = create_fbank()
start = time.time()
audio, sample_rate = sf.read(args.wav, dtype="float32", always_2d=True)
audio = audio[:, 0] # only use the first channel
if sample_rate != 16000:
audio = librosa.resample(
audio,
orig_sr=sample_rate,
target_sr=16000,
)
sample_rate = 16000
features = compute_features(audio, fbank)
if model.normalize_type != "":
assert model.normalize_type == "per_feature", model.normalize_type
mean = features.mean(axis=0, keepdims=True)
stddev = features.std(axis=0, keepdims=True) + 1e-5
features = (features - mean) / stddev
features = np.expand_dims(features, axis=0)
# features.shape: (1, 291, 128)
features_len = np.array([features.shape[1]], dtype=np.int64)
enc_states, _, enc_masks = model.run_encoder(features, features_len)
decoder_input_ids = []
decoder_input_ids.append(token2id["<|startofcontext|>"])
decoder_input_ids.append(token2id["<|startoftranscript|>"])
decoder_input_ids.append(token2id["<|emo:undefined|>"])
if args.source_lang in ("en", "es", "de", "fr"):
decoder_input_ids.append(token2id[f"<|{args.source_lang}|>"])
else:
decoder_input_ids.append(token2id[f"<|en|>"])
if args.target_lang in ("en", "es", "de", "fr"):
decoder_input_ids.append(token2id[f"<|{args.target_lang}|>"])
else:
decoder_input_ids.append(token2id[f"<|en|>"])
if args.use_pnc:
decoder_input_ids.append(token2id[f"<|pnc|>"])
else:
decoder_input_ids.append(token2id[f"<|nopnc|>"])
decoder_input_ids.append(token2id[f"<|noitn|>"])
decoder_input_ids.append(token2id["<|notimestamp|>"])
decoder_input_ids.append(token2id["<|nodiarize|>"])
decoder_mems_list = [np.zeros((1, 0, 1024), dtype=np.float32) for _ in range(6)]
for pos, decoder_input_id in enumerate(decoder_input_ids):
logits, decoder_mems_list = model.run_decoder(
np.array([[decoder_input_id, pos]], dtype=np.int32),
decoder_mems_list,
enc_states,
enc_masks,
)
tokens = [logits.argmax()]
print("decoder_input_ids", decoder_input_ids)
eos = token2id["<|endoftext|>"]
for i in range(1, 200):
decoder_input_ids = [tokens[-1], i]
logits, decoder_mems_list = model.run_decoder(
np.array([decoder_input_ids], dtype=np.int32),
decoder_mems_list,
enc_states,
enc_masks,
)
t = logits.argmax()
if t == eos:
break
tokens.append(t)
print("len(tokens)", len(tokens))
print("tokens", tokens)
text = "".join([id2token[i] for i in tokens])
underline = "▁"
# underline = b"\xe2\x96\x81".decode()
text = text.replace(underline, " ").strip()
print("text:", text)
if __name__ == "__main__":
main()