Fangjun Kuang
Committed by GitHub

Fix nemo feature normalization in test code (#2361)

@@ -228,8 +228,8 @@ def main(): @@ -228,8 +228,8 @@ def main():
228 features = compute_features(audio, fbank) 228 features = compute_features(audio, fbank)
229 if model.normalize_type != "": 229 if model.normalize_type != "":
230 assert model.normalize_type == "per_feature", model.normalize_type 230 assert model.normalize_type == "per_feature", model.normalize_type
231 - mean = features.mean(axis=1, keepdims=True)  
232 - stddev = features.std(axis=1, keepdims=True) + 1e-5 231 + mean = features.mean(axis=0, keepdims=True)
  232 + stddev = features.std(axis=0, keepdims=True) + 1e-5
233 features = (features - mean) / stddev 233 features = (features - mean) / stddev
234 234
235 features = np.expand_dims(features, axis=0) 235 features = np.expand_dims(features, axis=0)
@@ -140,8 +140,8 @@ def main(): @@ -140,8 +140,8 @@ def main():
140 if model.normalize_type != "": 140 if model.normalize_type != "":
141 assert model.normalize_type == "per_feature", model.normalize_type 141 assert model.normalize_type == "per_feature", model.normalize_type
142 features = torch.from_numpy(features) 142 features = torch.from_numpy(features)
143 - mean = features.mean(dim=1, keepdims=True)  
144 - stddev = features.std(dim=1, keepdims=True) + 1e-5 143 + mean = features.mean(dim=0, keepdims=True)
  144 + stddev = features.std(dim=0, keepdims=True) + 1e-5
145 features = (features - mean) / stddev 145 features = (features - mean) / stddev
146 features = features.numpy() 146 features = features.numpy()
147 147
@@ -184,12 +184,7 @@ class OnnxModel: @@ -184,12 +184,7 @@ class OnnxModel:
184 target = torch.tensor([[token]], dtype=torch.int32).numpy() 184 target = torch.tensor([[token]], dtype=torch.int32).numpy()
185 target_len = torch.tensor([1], dtype=torch.int32).numpy() 185 target_len = torch.tensor([1], dtype=torch.int32).numpy()
186 186
187 - (  
188 - decoder_out,  
189 - decoder_out_length,  
190 - state0_next,  
191 - state1_next,  
192 - ) = self.decoder.run( 187 + (decoder_out, decoder_out_length, state0_next, state1_next,) = self.decoder.run(
193 [ 188 [
194 self.decoder.get_outputs()[0].name, 189 self.decoder.get_outputs()[0].name,
195 self.decoder.get_outputs()[1].name, 190 self.decoder.get_outputs()[1].name,
@@ -267,8 +262,8 @@ def main(): @@ -267,8 +262,8 @@ def main():
267 if model.normalize_type != "": 262 if model.normalize_type != "":
268 assert model.normalize_type == "per_feature", model.normalize_type 263 assert model.normalize_type == "per_feature", model.normalize_type
269 features = torch.from_numpy(features) 264 features = torch.from_numpy(features)
270 - mean = features.mean(dim=1, keepdims=True)  
271 - stddev = features.std(dim=1, keepdims=True) + 1e-5 265 + mean = features.mean(dim=0, keepdims=True)
  266 + stddev = features.std(dim=0, keepdims=True) + 1e-5
272 features = (features - mean) / stddev 267 features = (features - mean) / stddev
273 features = features.numpy() 268 features = features.numpy()
274 print(audio.shape) 269 print(audio.shape)
@@ -233,8 +233,8 @@ def main(): @@ -233,8 +233,8 @@ def main():
233 if model.normalize_type != "": 233 if model.normalize_type != "":
234 assert model.normalize_type == "per_feature", model.normalize_type 234 assert model.normalize_type == "per_feature", model.normalize_type
235 features = torch.from_numpy(features) 235 features = torch.from_numpy(features)
236 - mean = features.mean(dim=1, keepdims=True)  
237 - stddev = features.std(dim=1, keepdims=True) + 1e-5 236 + mean = features.mean(dim=0, keepdims=True)
  237 + stddev = features.std(dim=0, keepdims=True) + 1e-5
238 features = (features - mean) / stddev 238 features = (features - mean) / stddev
239 features = features.numpy() 239 features = features.numpy()
240 print(audio.shape) 240 print(audio.shape)