yolo11_obb.cpp
16.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2025 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// 1. install
// pip3 install -U ultralytics pnnx ncnn
// 2. export yolo11-obb torchscript
// yolo export model=yolo11n-obb.pt format=torchscript
// 3. convert torchscript with static shape
// pnnx yolo11n-obb.torchscript
// 4. modify yolo11n_obb_pnnx.py for dynamic shape inference
// A. modify reshape to support dynamic image sizes
// B. permute tensor before concat and adjust concat axis
// C. drop post-process part
// before:
// v_195 = v_194.view(1, 1, 16384)
// v_201 = v_200.view(1, 1, 4096)
// v_207 = v_206.view(1, 1, 1024)
// v_208 = torch.cat((v_195, v_201, v_207), dim=2)
// ...
// v_256 = v_225.view(1, 79, 16384)
// v_257 = v_240.view(1, 79, 4096)
// v_258 = v_255.view(1, 79, 1024)
// v_259 = torch.cat((v_256, v_257, v_258), dim=2)
// ...
// after:
// v_195 = v_194.view(1, 1, -1).transpose(1, 2)
// v_201 = v_200.view(1, 1, -1).transpose(1, 2)
// v_207 = v_206.view(1, 1, -1).transpose(1, 2)
// v_208 = torch.cat((v_195, v_201, v_207), dim=1)
// ...
// v_256 = v_225.view(1, 79, -1).transpose(1, 2)
// v_257 = v_240.view(1, 79, -1).transpose(1, 2)
// v_258 = v_255.view(1, 79, -1).transpose(1, 2)
// v_259 = torch.cat((v_256, v_257, v_258), dim=1)
// return v_259, v_208
// D. modify area attention for dynamic shape inference
// before:
// v_95 = self.model_10_m_0_attn_qkv_conv(v_94)
// v_96 = v_95.view(1, 2, 128, 1024)
// v_97, v_98, v_99 = torch.split(tensor=v_96, dim=2, split_size_or_sections=(32,32,64))
// v_100 = torch.transpose(input=v_97, dim0=-2, dim1=-1)
// v_101 = torch.matmul(input=v_100, other=v_98)
// v_102 = (v_101 * 0.176777)
// v_103 = F.softmax(input=v_102, dim=-1)
// v_104 = torch.transpose(input=v_103, dim0=-2, dim1=-1)
// v_105 = torch.matmul(input=v_99, other=v_104)
// v_106 = v_105.view(1, 128, 32, 32)
// v_107 = v_99.reshape(1, 128, 32, 32)
// v_108 = self.model_10_m_0_attn_pe_conv(v_107)
// v_109 = (v_106 + v_108)
// v_110 = self.model_10_m_0_attn_proj_conv(v_109)
// after:
// v_95 = self.model_10_m_0_attn_qkv_conv(v_94)
// v_96 = v_95.view(1, 2, 128, -1)
// v_97, v_98, v_99 = torch.split(tensor=v_96, dim=2, split_size_or_sections=(32,32,64))
// v_100 = torch.transpose(input=v_97, dim0=-2, dim1=-1)
// v_101 = torch.matmul(input=v_100, other=v_98)
// v_102 = (v_101 * 0.176777)
// v_103 = F.softmax(input=v_102, dim=-1)
// v_104 = torch.transpose(input=v_103, dim0=-2, dim1=-1)
// v_105 = torch.matmul(input=v_99, other=v_104)
// v_106 = v_105.view(1, 128, v_95.size(2), v_95.size(3))
// v_107 = v_99.reshape(1, 128, v_95.size(2), v_95.size(3))
// v_108 = self.model_10_m_0_attn_pe_conv(v_107)
// v_109 = (v_106 + v_108)
// v_110 = self.model_10_m_0_attn_proj_conv(v_109)
// 5. re-export yolo11-obb torchscript
// python3 -c 'import yolo11n_obb_pnnx; yolo11n_obb_pnnx.export_torchscript()'
// 6. convert new torchscript with dynamic shape
// pnnx yolo11n_obb_pnnx.py.pt inputshape=[1,3,1024,1024] inputshape2=[1,3,512,512]
// 7. now you get ncnn model files
// mv yolo11n_obb_pnnx.py.ncnn.param yolo11n_obb.ncnn.param
// mv yolo11n_obb_pnnx.py.ncnn.bin yolo11n_obb.ncnn.bin
// the out blob would be a 2-dim tensor with w=79 h=21504
//
// | bbox-reg 16 x 4 |score(15)|
// +-----+-----+-----+-----+---------+
// | dx0 | dy0 | dx1 | dy1 | 0.1 ... |
// all /| | | | | ... |
// boxes | .. | .. | .. | .. | 0.0 ... |
// (21504)| | | | | . ... |
// \| | | | | . ... |
// +-----+-----+-----+-----+---------+
//
// the out blob would be a 2-dim tensor with w=1 h=21504
//
// | degree(1)|
// +----------+
// | 0.1 |
// all /| |
// boxes | 0.0 |
// (21504)| . |
// \| . |
// +----------+
//
#include "yolo11.h"
#include "layer.h"
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <float.h>
#include <stdio.h>
#include <vector>
static inline float intersection_area(const Object& a, const Object& b)
{
std::vector<cv::Point2f> intersection;
cv::rotatedRectangleIntersection(a.rrect, b.rrect, intersection);
if (intersection.empty())
return 0.f;
return cv::contourArea(intersection);
}
static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
{
int i = left;
int j = right;
float p = objects[(left + right) / 2].prob;
while (i <= j)
{
while (objects[i].prob > p)
i++;
while (objects[j].prob < p)
j--;
if (i <= j)
{
// swap
std::swap(objects[i], objects[j]);
i++;
j--;
}
}
// #pragma omp parallel sections
{
// #pragma omp section
{
if (left < j) qsort_descent_inplace(objects, left, j);
}
// #pragma omp section
{
if (i < right) qsort_descent_inplace(objects, i, right);
}
}
}
static void qsort_descent_inplace(std::vector<Object>& objects)
{
if (objects.empty())
return;
qsort_descent_inplace(objects, 0, objects.size() - 1);
}
static void nms_sorted_bboxes(const std::vector<Object>& objects, std::vector<int>& picked, float nms_threshold, bool agnostic = false)
{
picked.clear();
const int n = objects.size();
std::vector<float> areas(n);
for (int i = 0; i < n; i++)
{
areas[i] = objects[i].rrect.size.area();
}
for (int i = 0; i < n; i++)
{
const Object& a = objects[i];
int keep = 1;
for (int j = 0; j < (int)picked.size(); j++)
{
const Object& b = objects[picked[j]];
if (!agnostic && a.label != b.label)
continue;
// intersection over union
float inter_area = intersection_area(a, b);
float union_area = areas[i] + areas[picked[j]] - inter_area;
// float IoU = inter_area / union_area;
if (inter_area / union_area > nms_threshold)
keep = 0;
}
if (keep)
picked.push_back(i);
}
}
static inline float sigmoid(float x)
{
return 1.0f / (1.0f + expf(-x));
}
static void generate_proposals(const ncnn::Mat& pred, const ncnn::Mat& pred_angle, int stride, const ncnn::Mat& in_pad, float prob_threshold, std::vector<Object>& objects)
{
const int w = in_pad.w;
const int h = in_pad.h;
const int num_grid_x = w / stride;
const int num_grid_y = h / stride;
const int reg_max_1 = 16;
const int num_class = pred.w - reg_max_1 * 4; // number of classes. 15 for DOTAv1
for (int y = 0; y < num_grid_y; y++)
{
for (int x = 0; x < num_grid_x; x++)
{
const ncnn::Mat pred_grid = pred.row_range(y * num_grid_x + x, 1);
// find label with max score
int label = -1;
float score = -FLT_MAX;
{
const ncnn::Mat pred_score = pred_grid.range(reg_max_1 * 4, num_class);
for (int k = 0; k < num_class; k++)
{
float s = pred_score[k];
if (s > score)
{
label = k;
score = s;
}
}
score = sigmoid(score);
}
if (score >= prob_threshold)
{
ncnn::Mat pred_bbox = pred_grid.range(0, reg_max_1 * 4).reshape(reg_max_1, 4).clone();
{
ncnn::Layer* softmax = ncnn::create_layer("Softmax");
ncnn::ParamDict pd;
pd.set(0, 1); // axis
pd.set(1, 1);
softmax->load_param(pd);
ncnn::Option opt;
opt.num_threads = 1;
opt.use_packing_layout = false;
softmax->create_pipeline(opt);
softmax->forward_inplace(pred_bbox, opt);
softmax->destroy_pipeline(opt);
delete softmax;
}
float pred_ltrb[4];
for (int k = 0; k < 4; k++)
{
float dis = 0.f;
const float* dis_after_sm = pred_bbox.row(k);
for (int l = 0; l < reg_max_1; l++)
{
dis += l * dis_after_sm[l];
}
pred_ltrb[k] = dis * stride;
}
float pb_cx = (x + 0.5f) * stride;
float pb_cy = (y + 0.5f) * stride;
const float angle = sigmoid(pred_angle.row(y * num_grid_x + x)[0]) - 0.25f;
const float angle_rad = angle * 3.14159265358979323846f;
const float angle_degree = angle * 180.f;
float cos = cosf(angle_rad);
float sin = sinf(angle_rad);
float xx = (pred_ltrb[2] - pred_ltrb[0]) * 0.5f;
float yy = (pred_ltrb[3] - pred_ltrb[1]) * 0.5f;
float xr = xx * cos - yy * sin;
float yr = xx * sin + yy * cos;
const float cx = pb_cx + xr;
const float cy = pb_cy + yr;
const float ww = pred_ltrb[2] + pred_ltrb[0];
const float hh = pred_ltrb[3] + pred_ltrb[1];
Object obj;
obj.rrect = cv::RotatedRect(cv::Point2f(cx, cy), cv::Size_<float>(ww, hh), angle_degree);
obj.label = label;
obj.prob = score;
objects.push_back(obj);
}
}
}
}
static void generate_proposals(const ncnn::Mat& pred, const ncnn::Mat& pred_angle, const std::vector<int>& strides, const ncnn::Mat& in_pad, float prob_threshold, std::vector<Object>& objects)
{
const int w = in_pad.w;
const int h = in_pad.h;
int pred_row_offset = 0;
for (size_t i = 0; i < strides.size(); i++)
{
const int stride = strides[i];
const int num_grid_x = w / stride;
const int num_grid_y = h / stride;
const int num_grid = num_grid_x * num_grid_y;
generate_proposals(pred.row_range(pred_row_offset, num_grid), pred_angle.row_range(pred_row_offset, num_grid), stride, in_pad, prob_threshold, objects);
pred_row_offset += num_grid;
}
}
int YOLO11_obb::detect(const cv::Mat& rgb, std::vector<Object>& objects)
{
const int target_size = det_target_size;//1024;
const float prob_threshold = 0.25f;
const float nms_threshold = 0.45f;
int img_w = rgb.cols;
int img_h = rgb.rows;
// ultralytics/cfg/models/v8/yolo11.yaml
std::vector<int> strides(3);
strides[0] = 8;
strides[1] = 16;
strides[2] = 32;
const int max_stride = 32;
// letterbox pad to multiple of max_stride
int w = img_w;
int h = img_h;
float scale = 1.f;
if (w > h)
{
scale = (float)target_size / w;
w = target_size;
h = h * scale;
}
else
{
scale = (float)target_size / h;
h = target_size;
w = w * scale;
}
ncnn::Mat in = ncnn::Mat::from_pixels_resize(rgb.data, ncnn::Mat::PIXEL_RGB, img_w, img_h, w, h);
// letterbox pad to target_size rectangle
int wpad = (w + max_stride - 1) / max_stride * max_stride - w;
int hpad = (h + max_stride - 1) / max_stride * max_stride - h;
ncnn::Mat in_pad;
ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
in_pad.substract_mean_normalize(0, norm_vals);
ncnn::Extractor ex = yolo11.create_extractor();
ex.input("in0", in_pad);
ncnn::Mat out;
ex.extract("out0", out);
ncnn::Mat out_angle;
ex.extract("out1", out_angle);
std::vector<Object> proposals;
generate_proposals(out, out_angle, strides, in_pad, prob_threshold, proposals);
// sort all proposals by score from highest to lowest
qsort_descent_inplace(proposals);
// apply nms with nms_threshold
std::vector<int> picked;
nms_sorted_bboxes(proposals, picked, nms_threshold);
int count = picked.size();
if (count == 0)
return 0;
objects.resize(count);
for (int i = 0; i < count; i++)
{
Object obj = proposals[picked[i]];
// adjust offset to original unpadded
obj.rrect.center.x = (obj.rrect.center.x - (wpad / 2)) / scale;
obj.rrect.center.y = (obj.rrect.center.y - (hpad / 2)) / scale;
obj.rrect.size.width = (obj.rrect.size.width) / scale;
obj.rrect.size.height = (obj.rrect.size.height) / scale;
objects[i] = obj;
}
return 0;
}
int YOLO11_obb::draw(cv::Mat& rgb, const std::vector<Object>& objects)
{
static const char* class_names[] = {
"plane", "ship", "storage tank", "baseball diamond", "tennis court",
"basketball court", "ground track field", "harbor", "bridge", "large vehicle",
"small vehicle", "helicopter", "roundabout", "soccer ball field", "swimming pool"
};
static const cv::Scalar colors[] = {
cv::Scalar( 39, 176, 156),
cv::Scalar( 58, 183, 103),
cv::Scalar( 81, 181, 63),
cv::Scalar(150, 243, 33),
cv::Scalar(169, 244, 3),
cv::Scalar(188, 212, 0),
cv::Scalar(150, 136, 0),
cv::Scalar(175, 80, 76),
cv::Scalar(195, 74, 139),
cv::Scalar(220, 57, 205),
cv::Scalar(235, 59, 255),
cv::Scalar(193, 7, 255),
cv::Scalar(152, 0, 255),
cv::Scalar( 87, 34, 255),
cv::Scalar( 85, 72, 121),
cv::Scalar(158, 158, 158),
cv::Scalar(125, 139, 96)
};
for (size_t i = 0; i < objects.size(); i++)
{
const Object& obj = objects[i];
const cv::Scalar& color = colors[obj.label];
// fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f @ %.2f\n", obj.label, obj.prob,
// obj.rrect.center.x, obj.rrect.center.y, obj.rrect.size.width, obj.rrect.size.height, obj.rrect.angle);
cv::Point2f corners[4];
obj.rrect.points(corners);
cv::line(rgb, corners[0], corners[1], color);
cv::line(rgb, corners[1], corners[2], color);
cv::line(rgb, corners[2], corners[3], color);
cv::line(rgb, corners[3], corners[0], color);
}
for (size_t i = 0; i < objects.size(); i++)
{
const Object& obj = objects[i];
const cv::Scalar& color = colors[obj.label];
char text[256];
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
int x = obj.rrect.center.x - label_size.width / 2;
int y = obj.rrect.center.y - label_size.height / 2 - baseLine;
if (y < 0)
y = 0;
if (y + label_size.height > rgb.rows)
y = rgb.rows - label_size.height;
if (x < 0)
x = 0;
if (x + label_size.width > rgb.cols)
x = rgb.cols - label_size.width;
cv::rectangle(rgb, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
cv::Scalar(255, 255, 255), -1);
cv::putText(rgb, text, cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
return 0;
}