yolo11_seg.cpp 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2025 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

// 1. install
//      pip3 install -U ultralytics pnnx ncnn
// 2. export yolo11-seg torchscript
//      yolo export model=yolo11n-seg.pt format=torchscript
// 3. convert torchscript with static shape
//      pnnx yolo11n-seg.torchscript
// 4. modify yolo11n_seg_pnnx.py for dynamic shape inference
//      A. modify reshape to support dynamic image sizes
//      B. permute tensor before concat and adjust concat axis
//      C. drop post-process part
//      before:
//          v_202 = v_201.view(1, 32, 6400)
//          v_208 = v_207.view(1, 32, 1600)
//          v_214 = v_213.view(1, 32, 400)
//          v_215 = torch.cat((v_202, v_208, v_214), dim=2)
//          ...
//          v_261 = v_230.view(1, 144, 6400)
//          v_262 = v_245.view(1, 144, 1600)
//          v_263 = v_260.view(1, 144, 400)
//          v_264 = torch.cat((v_261, v_262, v_263), dim=2)
//          ...
//          v_285 = (v_284, v_196, )
//          return v_285
//      after:
//          v_202 = v_201.view(1, 32, -1).transpose(1, 2)
//          v_208 = v_207.view(1, 32, -1).transpose(1, 2)
//          v_214 = v_213.view(1, 32, -1).transpose(1, 2)
//          v_215 = torch.cat((v_202, v_208, v_214), dim=1)
//          ...
//          v_261 = v_230.view(1, 144, -1).transpose(1, 2)
//          v_262 = v_245.view(1, 144, -1).transpose(1, 2)
//          v_263 = v_260.view(1, 144, -1).transpose(1, 2)
//          v_264 = torch.cat((v_261, v_262, v_263), dim=1)
//          return v_264, v_215, v_196
//      D. modify area attention for dynamic shape inference
//      before:
//          v_95 = self.model_10_m_0_attn_qkv_conv(v_94)
//          v_96 = v_95.view(1, 2, 128, 400)
//          v_97, v_98, v_99 = torch.split(tensor=v_96, dim=2, split_size_or_sections=(32,32,64))
//          v_100 = torch.transpose(input=v_97, dim0=-2, dim1=-1)
//          v_101 = torch.matmul(input=v_100, other=v_98)
//          v_102 = (v_101 * 0.176777)
//          v_103 = F.softmax(input=v_102, dim=-1)
//          v_104 = torch.transpose(input=v_103, dim0=-2, dim1=-1)
//          v_105 = torch.matmul(input=v_99, other=v_104)
//          v_106 = v_105.view(1, 128, 20, 20)
//          v_107 = v_99.reshape(1, 128, 20, 20)
//          v_108 = self.model_10_m_0_attn_pe_conv(v_107)
//          v_109 = (v_106 + v_108)
//          v_110 = self.model_10_m_0_attn_proj_conv(v_109)
//      after:
//          v_95 = self.model_10_m_0_attn_qkv_conv(v_94)
//          v_96 = v_95.view(1, 2, 128, -1)
//          v_97, v_98, v_99 = torch.split(tensor=v_96, dim=2, split_size_or_sections=(32,32,64))
//          v_100 = torch.transpose(input=v_97, dim0=-2, dim1=-1)
//          v_101 = torch.matmul(input=v_100, other=v_98)
//          v_102 = (v_101 * 0.176777)
//          v_103 = F.softmax(input=v_102, dim=-1)
//          v_104 = torch.transpose(input=v_103, dim0=-2, dim1=-1)
//          v_105 = torch.matmul(input=v_99, other=v_104)
//          v_106 = v_105.view(1, 128, v_95.size(2), v_95.size(3))
//          v_107 = v_99.reshape(1, 128, v_95.size(2), v_95.size(3))
//          v_108 = self.model_10_m_0_attn_pe_conv(v_107)
//          v_109 = (v_106 + v_108)
//          v_110 = self.model_10_m_0_attn_proj_conv(v_109)
// 5. re-export yolo11-seg torchscript
//      python3 -c 'import yolo11n_seg_pnnx; yolo11n_seg_pnnx.export_torchscript()'
// 6. convert new torchscript with dynamic shape
//      pnnx yolo11n_seg_pnnx.py.pt inputshape=[1,3,640,640] inputshape2=[1,3,320,320]
// 7. now you get ncnn model files
//      mv yolo11n_seg_pnnx.py.ncnn.param yolo11n_seg.ncnn.param
//      mv yolo11n_seg_pnnx.py.ncnn.bin yolo11n_seg.ncnn.bin

// the out blob would be a 2-dim tensor with w=176 h=8400
//
//        | bbox-reg 16 x 4       | per-class scores(80) |
//        +-----+-----+-----+-----+----------------------+
//        | dx0 | dy0 | dx1 | dy1 |0.1 0.0 0.0 0.5 ......|
//   all /|     |     |     |     |           .          |
//  boxes |  .. |  .. |  .. |  .. |0.0 0.9 0.0 0.0 ......|
//  (8400)|     |     |     |     |           .          |
//       \|     |     |     |     |           .          |
//        +-----+-----+-----+-----+----------------------+
//

//
//        | mask (32) |
//        +-----------+
//        |0.1........|
//   all /|           |
//  boxes |0.0........|
//  (8400)|     .     |
//       \|     .     |
//        +-----------+
//

#include "yolo11.h"

#include "layer.h"

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include <float.h>
#include <stdio.h>
#include <vector>

static inline float intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}

static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
{
    int i = left;
    int j = right;
    float p = objects[(left + right) / 2].prob;

    while (i <= j)
    {
        while (objects[i].prob > p)
            i++;

        while (objects[j].prob < p)
            j--;

        if (i <= j)
        {
            // swap
            std::swap(objects[i], objects[j]);

            i++;
            j--;
        }
    }

    // #pragma omp parallel sections
    {
        // #pragma omp section
        {
            if (left < j) qsort_descent_inplace(objects, left, j);
        }
        // #pragma omp section
        {
            if (i < right) qsort_descent_inplace(objects, i, right);
        }
    }
}

static void qsort_descent_inplace(std::vector<Object>& objects)
{
    if (objects.empty())
        return;

    qsort_descent_inplace(objects, 0, objects.size() - 1);
}

static void nms_sorted_bboxes(const std::vector<Object>& objects, std::vector<int>& picked, float nms_threshold, bool agnostic = false)
{
    picked.clear();

    const int n = objects.size();

    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = objects[i].rect.area();
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = objects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = objects[picked[j]];

            if (!agnostic && a.label != b.label)
                continue;

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
            picked.push_back(i);
    }
}

static inline float sigmoid(float x)
{
    return 1.0f / (1.0f + expf(-x));
}

static void generate_proposals(const ncnn::Mat& pred, int stride, const ncnn::Mat& in_pad, float prob_threshold, std::vector<Object>& objects)
{
    const int w = in_pad.w;
    const int h = in_pad.h;

    const int num_grid_x = w / stride;
    const int num_grid_y = h / stride;

    const int reg_max_1 = 16;
    const int num_class = pred.w - reg_max_1 * 4; // number of classes. 80 for COCO

    for (int y = 0; y < num_grid_y; y++)
    {
        for (int x = 0; x < num_grid_x; x++)
        {
            const ncnn::Mat pred_grid = pred.row_range(y * num_grid_x + x, 1);

            // find label with max score
            int label = -1;
            float score = -FLT_MAX;
            {
                const ncnn::Mat pred_score = pred_grid.range(reg_max_1 * 4, num_class);

                for (int k = 0; k < num_class; k++)
                {
                    float s = pred_score[k];
                    if (s > score)
                    {
                        label = k;
                        score = s;
                    }
                }

                score = sigmoid(score);
            }

            if (score >= prob_threshold)
            {
                ncnn::Mat pred_bbox = pred_grid.range(0, reg_max_1 * 4).reshape(reg_max_1, 4).clone();

                {
                    ncnn::Layer* softmax = ncnn::create_layer("Softmax");

                    ncnn::ParamDict pd;
                    pd.set(0, 1); // axis
                    pd.set(1, 1);
                    softmax->load_param(pd);

                    ncnn::Option opt;
                    opt.num_threads = 1;
                    opt.use_packing_layout = false;

                    softmax->create_pipeline(opt);

                    softmax->forward_inplace(pred_bbox, opt);

                    softmax->destroy_pipeline(opt);

                    delete softmax;
                }

                float pred_ltrb[4];
                for (int k = 0; k < 4; k++)
                {
                    float dis = 0.f;
                    const float* dis_after_sm = pred_bbox.row(k);
                    for (int l = 0; l < reg_max_1; l++)
                    {
                        dis += l * dis_after_sm[l];
                    }

                    pred_ltrb[k] = dis * stride;
                }

                float pb_cx = (x + 0.5f) * stride;
                float pb_cy = (y + 0.5f) * stride;

                float x0 = pb_cx - pred_ltrb[0];
                float y0 = pb_cy - pred_ltrb[1];
                float x1 = pb_cx + pred_ltrb[2];
                float y1 = pb_cy + pred_ltrb[3];

                Object obj;
                obj.rect.x = x0;
                obj.rect.y = y0;
                obj.rect.width = x1 - x0;
                obj.rect.height = y1 - y0;
                obj.label = label;
                obj.prob = score;
                obj.gindex = y * num_grid_x + x;

                objects.push_back(obj);
            }
        }
    }
}

static void generate_proposals(const ncnn::Mat& pred, const std::vector<int>& strides, const ncnn::Mat& in_pad, float prob_threshold, std::vector<Object>& objects)
{
    const int w = in_pad.w;
    const int h = in_pad.h;

    int pred_row_offset = 0;
    for (size_t i = 0; i < strides.size(); i++)
    {
        const int stride = strides[i];

        const int num_grid_x = w / stride;
        const int num_grid_y = h / stride;
        const int num_grid = num_grid_x * num_grid_y;

        std::vector<Object> objects_stride;
        generate_proposals(pred.row_range(pred_row_offset, num_grid), stride, in_pad, prob_threshold, objects_stride);

        for (size_t j = 0; j < objects_stride.size(); j++)
        {
            Object obj = objects_stride[j];
            obj.gindex += pred_row_offset;
            objects.push_back(obj);
        }

        pred_row_offset += num_grid;
    }
}

int YOLO11_seg::detect(const cv::Mat& rgb, std::vector<Object>& objects)
{
    const int target_size = det_target_size;//640;
    const float prob_threshold = 0.25f;
    const float nms_threshold = 0.45f;
    const float mask_threshold = 0.5f;

    int img_w = rgb.cols;
    int img_h = rgb.rows;

    // ultralytics/cfg/models/v8/yolo11.yaml
    std::vector<int> strides(3);
    strides[0] = 8;
    strides[1] = 16;
    strides[2] = 32;
    const int max_stride = 32;

    // letterbox pad to multiple of max_stride
    int w = img_w;
    int h = img_h;
    float scale = 1.f;
    if (w > h)
    {
        scale = (float)target_size / w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / h;
        h = target_size;
        w = w * scale;
    }

    ncnn::Mat in = ncnn::Mat::from_pixels_resize(rgb.data, ncnn::Mat::PIXEL_RGB, img_w, img_h, w, h);

    // letterbox pad to target_size rectangle
    int wpad = (w + max_stride - 1) / max_stride * max_stride - w;
    int hpad = (h + max_stride - 1) / max_stride * max_stride - h;
    ncnn::Mat in_pad;
    ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);

    const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
    in_pad.substract_mean_normalize(0, norm_vals);

    ncnn::Extractor ex = yolo11.create_extractor();

    ex.input("in0", in_pad);

    ncnn::Mat out;
    ex.extract("out0", out);

    std::vector<Object> proposals;
    generate_proposals(out, strides, in_pad, prob_threshold, proposals);

    // sort all proposals by score from highest to lowest
    qsort_descent_inplace(proposals);

    // apply nms with nms_threshold
    std::vector<int> picked;
    nms_sorted_bboxes(proposals, picked, nms_threshold);

    int count = picked.size();
    if (count == 0)
        return 0;

    ncnn::Mat mask_feat;
    ex.extract("out1", mask_feat);

    ncnn::Mat mask_protos;
    ex.extract("out2", mask_protos);

    ncnn::Mat objects_mask_feat(mask_feat.w, 1, count);

    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];

        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
        float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;

        // clip
        x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
        y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
        x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
        y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);

        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;

        // pick mask feat
        memcpy(objects_mask_feat.channel(i), mask_feat.row(objects[i].gindex), mask_feat.w * sizeof(float));
    }

    // process mask
    ncnn::Mat objects_mask;
    {
        ncnn::Layer* gemm = ncnn::create_layer("Gemm");

        ncnn::ParamDict pd;
        pd.set(6, 1); // constantC
        pd.set(7, count); // constantM
        pd.set(8, mask_protos.w * mask_protos.h); // constantN
        pd.set(9, mask_feat.w); // constantK
        pd.set(10, -1); // constant_broadcast_type_C
        pd.set(11, 1); // output_N1M
        gemm->load_param(pd);

        ncnn::Option opt;
        opt.num_threads = 1;
        opt.use_packing_layout = false;

        gemm->create_pipeline(opt);

        std::vector<ncnn::Mat> gemm_inputs(2);
        gemm_inputs[0] = objects_mask_feat;
        gemm_inputs[1] = mask_protos.reshape(mask_protos.w * mask_protos.h, 1, mask_protos.c);
        std::vector<ncnn::Mat> gemm_outputs(1);
        gemm->forward(gemm_inputs, gemm_outputs, opt);
        objects_mask = gemm_outputs[0].reshape(mask_protos.w, mask_protos.h, count);

        gemm->destroy_pipeline(opt);

        delete gemm;
    }
    {
        ncnn::Layer* sigmoid = ncnn::create_layer("Sigmoid");

        ncnn::Option opt;
        opt.num_threads = 1;
        opt.use_packing_layout = false;

        sigmoid->create_pipeline(opt);

        sigmoid->forward_inplace(objects_mask, opt);

        sigmoid->destroy_pipeline(opt);

        delete sigmoid;
    }

    // resize mask map
    {
        ncnn::Mat objects_mask_resized;
        ncnn::resize_bilinear(objects_mask, objects_mask_resized, in_pad.w / scale, in_pad.h / scale);
        objects_mask = objects_mask_resized;
    }

    // create per-object mask
    for (int i = 0; i < count; i++)
    {
        Object& obj = objects[i];

        const ncnn::Mat mm = objects_mask.channel(i);

        obj.mask = cv::Mat((int)obj.rect.height, (int)obj.rect.width, CV_8UC1);

        // adjust offset to original unpadded and clip inside object box
        for (int y = 0; y < (int)obj.rect.height; y++)
        {
            const float* pmm = mm.row((int)(hpad / 2 / scale + obj.rect.y + y)) + (int)(wpad / 2 / scale + obj.rect.x);
            uchar* pmask = obj.mask.ptr<uchar>(y);
            for (int x = 0; x < (int)obj.rect.width; x++)
            {
                pmask[x] = pmm[x] > mask_threshold ? 1 : 0;
            }
        }
    }

    // sort objects by area
    struct
    {
        bool operator()(const Object& a, const Object& b) const
        {
            return a.rect.area() > b.rect.area();
        }
    } objects_area_greater;
    std::sort(objects.begin(), objects.end(), objects_area_greater);

    return 0;
}

int YOLO11_seg::draw(cv::Mat& rgb, const std::vector<Object>& objects)
{
    static const char* class_names[] = {
        "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush"
    };

    static cv::Scalar colors[] = {
        cv::Scalar( 67,  54, 244),
        cv::Scalar( 30,  99, 233),
        cv::Scalar( 39, 176, 156),
        cv::Scalar( 58, 183, 103),
        cv::Scalar( 81, 181,  63),
        cv::Scalar(150, 243,  33),
        cv::Scalar(169, 244,   3),
        cv::Scalar(188, 212,   0),
        cv::Scalar(150, 136,   0),
        cv::Scalar(175,  80,  76),
        cv::Scalar(195,  74, 139),
        cv::Scalar(220,  57, 205),
        cv::Scalar(235,  59, 255),
        cv::Scalar(193,   7, 255),
        cv::Scalar(152,   0, 255),
        cv::Scalar( 87,  34, 255),
        cv::Scalar( 85,  72, 121),
        cv::Scalar(158, 158, 158),
        cv::Scalar(125, 139,  96)
    };

    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];

        const cv::Scalar& color = colors[i % 19];

        // fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
                // obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);

        for (int y = 0; y < (int)obj.rect.height; y++)
        {
            const uchar* maskptr = obj.mask.ptr<const uchar>(y);
            uchar* bgrptr = rgb.ptr<uchar>((int)obj.rect.y + y) + (int)obj.rect.x * 3;
            for (int x = 0; x < (int)obj.rect.width; x++)
            {
                if (maskptr[x])
                {
                    bgrptr[0] = bgrptr[0] * 0.5 + color[0] * 0.5;
                    bgrptr[1] = bgrptr[1] * 0.5 + color[1] * 0.5;
                    bgrptr[2] = bgrptr[2] * 0.5 + color[2] * 0.5;
                }
                bgrptr += 3;
            }
        }

        cv::rectangle(rgb, obj.rect, color);

        char text[256];
        sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);

        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);

        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > rgb.cols)
            x = rgb.cols - label_size.width;

        cv::rectangle(rgb, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
                      cv::Scalar(255, 255, 255), -1);

        cv::putText(rgb, text, cv::Point(x, y + label_size.height),
                    cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
    }

    return 0;
}