EigenNonBlockingThreadPool.h 51.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* Modifications Copyright (c) Microsoft. */

#include <type_traits>

#pragma once
#include "onnxruntime_config.h"
// build/external/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h:162:71:
// error: ignoring attributes on template argument "Eigen::PacketType<const float, Eigen::DefaultDevice>::type {aka
// __vector(4) float}" [-Werror=ignored-attributes]
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#elif defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4127)
#pragma warning(disable : 4805)
#endif

#include "unsupported/Eigen/CXX11/ThreadPool"

#if defined(__GNUC__)
#pragma GCC diagnostic pop
#elif defined(_MSC_VER)
#pragma warning(pop)
#endif
#include "core/common/denormal.h"
#include "core/common/make_unique.h"
#include "core/common/spin_pause.h"
#include "core/platform/ort_mutex.h"
#include "core/platform/Barrier.h"

// ORT thread pool overview
// ------------------------
//
// The ORT thread pool implementation is split into two layers.  This
// file provides the low-level component.  See the accompanying
// comments in threadpool.h for the high-level component.
//
// The code here is derived from the Eigen non-blocking thread pool,
// although many parts have been updated over time.  The main
// abstractions used here are:
//
// - The thread pool maintains a set of OS threads running
//   ThreadPoolTempl::WorkerLoop.
//
//   Each thread has its own RunQueue object, holding a queue of tasks
//   that have been pushed to the thread for execution.  The main work
//   loop is to pop a task from the head of the queue, and to execute
//   it to completion.  If the worker's run queue is empty then it
//   will spin waiting for work, then attempt to steal tasks from
//   other threads' queues, and then block in the OS if it cannot find
//   work.
//
//   This spin-then-block behavior is configured via a flag provided
//   when creating the thread pool, and by the constant spin_count.
//
// - Although all tasks are simple void()->void functions,
//   conceptually there are three different kinds:
//
//   - One-shot tasks submitted externally via the Schedule() method.
//     These tasks are used to support asynchronous work.  These are
//     used in the parallel executor, but otherwise are not widely
//     used outside of test harnesses (see threadpool_test.cc for some
//     examples).
//
//   - Tasks for running a parallel loop.
//
//     The tasks themselves are defined in threadpool.cc, and are
//     submitted to the run queues via RunInParallel->SummonWorkers.
//     Each task will loop internally, picking off iterations from the
//     user's code via atoic-fetch-and-add, until the loop is
//     complete.
//
//     This two-layer approach lets us separate out the
//     super-lightweight per-iteration-batch work from the more
//     costsly per-loop work of managing Task objects.
//
//   - Tasks for running a parallel section.  This is an extension of
//     the approach taken for parallel loops.  However, the Tasks are
//     defined in this file, and can pick up iterations from a series
//     of different parallel loops.  The tasks are defined in
//     RunInParallelSection->SummonWorkers.
//
//     The additional layer of parallel sections is a further way to
//     amortize costs: the work done creating the tasks can be
//     performed once, and then exploited over a series of loops.
//
// There are a few aspects of the modified Eigen thread pool to
// highlight:
//
// - The run queues follow the usual approach of having push/pop
//   operations on the front/back, and optimizing the PopFront case
//   for single-threaded use by the thread owning the run queue.
//
//   However, we support an additional Revoke operation to replace an
//   item in the middle of a queue with a tombstone.  This operation
//   is used at the end of parallel loops and parallel sections to
//   remove any tasks that were created but not yet executed.  Once
//   revoked, a thread can rely on the fact that the task will no
//   longer execute.  Revocation helps manage captured state in
//   parallel loops: the alternatives would be (i) waiting for all
//   tasks that captured state to reach the head of their queues and
//   execute, or (ii) use heap-allocated state in tasks, and use a
//   technique such as reference counting to de-allocate it.
//
//   To support revoation, each thread has a unique "Tag" to identify
//   the items that it adds to the work queues.  A thread can revoke
//   an item only if it has the thread's own tag.
//
// - The worker threads maintain a best-effort bitmap in
//   good_worker_hints_ of which threads to push work to.  A thread
//   controls its status via SetGoodWorkerHint.  A thread is a "good"
//   worker when it is actively spinning for work, meaning both that
//   it is not blocked in the OS, and that it is not busy with work
//   already.
//
//   This heuristic aims to avoid waking additional sleeping threads
//   where possible, and in a series of parallel loops or parallel
//   sections to push the work to the same set of threads each time.

namespace onnxruntime {
namespace concurrency {

class ThreadPoolParallelSection;
class ThreadPoolLoop;

// Align to avoid false sharing with prior fields.  If required,
// alignment or padding must be added subsequently to avoid false
// sharing with later fields.  Note that:
//
// - The __x86_64__ value is twice the line size (64 bytes).  This
//   accounts for 2-line prefetch behavior on some cores.
//
// - Ideally, ORT_ALIGN_TO_AVOID_FALSE_SHARING is used.  However, the
//   definition of ThreadPoolParallelSection uses naive padding
//   because C++11 does not support alignment constraints on
//   allocation or expose stdlib.h aligned_alloc.  C++17 introduces
//   support for aligned allocation which we could use here.

#if defined(__x86_64__)
#define ORT_FALSE_SHARING_BYTES 128
#else
#define ORT_FALSE_SHARING_BYTES 64
#endif

#define ORT_ALIGN_TO_AVOID_FALSE_SHARING alignas(ORT_FALSE_SHARING_BYTES)

struct PaddingToAvoidFalseSharing {
  char padding[ORT_FALSE_SHARING_BYTES];
};

// Extended Eigen thread pool interface, avoiding the need to modify
// the ThreadPoolInterface.h header from the external Eigen
// repository.

class ExtendedThreadPoolInterface : public Eigen::ThreadPoolInterface {
 public:
  // Start/end a parallel section, within which calls to
  // RunInParallelSection may be made.  Parallel sections are
  // non-nesting.
  virtual std::unique_ptr<ThreadPoolParallelSection, void(*)(ThreadPoolParallelSection*)> AllocateParallelSection() = 0;
  virtual void StartParallelSection(ThreadPoolParallelSection &ps) = 0;
  virtual void EndParallelSection(ThreadPoolParallelSection &ps) = 0;

  // Run fn with up to n degree-of-parallelism enlisting the thread
  // pool for help.  The degree-of-parallelism includes the caller,
  // and so if n==1 then the function will run directly in the caller.
  //
  // The fork-join synchronization is handled in the thread pool, and
  // so any state captured by fn() is safe from concurrent access once
  // RunInParallelSection returns.
  //
  // The parameter idx provides a loop-local thread ID in the range
  // [0,k) where k<=n.
  virtual void RunInParallelSection(ThreadPoolParallelSection &ps,
                                    std::function<void(unsigned idx)> fn,
                                    unsigned n) = 0;

  // Special case alternative to RunInParallelSection for use without
  // an existing parallel section.  Ideally we would use a single
  // iplemenation and a stack-allocated ThreadPoolParallelSection.
  //
  // However, on the BM_ThreadPoolParallelFor microbenchmark I saw
  // ~20% overhead on the resulting single-loop parallel sections.
  // There are some additional costs (~5%) for additional invocations
  // through lambda functions on loop entry.  Most significantly, on
  // loop exit, we incurred ~15% cost by no longer being able to
  // overlap clean-up of unused Task objects in EndParallelSection
  // with waiting for loop iterations to complete.
  //
  // [ Note that this 20% overhead is more than paid for when we have
  // two loops execute in series in a parallel section. ]
  virtual void RunInParallel(std::function<void(unsigned idx)> fn,
                             unsigned n) = 0;
};


class ThreadPoolParallelSection {
 public:
  // State accessed only by the main thread
  // --------------------------------------

  // Tasks successfully submitted to the work queues.  This sets the
  // maximum degree of parallelism that the section will support.
  std::vector<std::pair<int,unsigned>> tasks;

  // State shared between the main thread and worker threads
  // -------------------------------------------------------

  // Flag to signal termination of the parallel section
  std::atomic<bool> active{false};

  std::atomic<unsigned> worker_idx{0};

  // Count of the number of tasks that completed normally.  Other
  // tasks may be running currently, or may be present in work queues,
  // or may have been removed from the queues by
  // RunQueue::RevokeWithTag.
  PaddingToAvoidFalseSharing padding_1;
  std::atomic<unsigned> tasks_finished{0};
  PaddingToAvoidFalseSharing padding_2;

  // If non-null, the current loop that tasks should be executing.  We
  // need to be careful on access to the contents of current_loop
  // because it can be stack allocated on the thread entering the
  // loop:
  //
  // - Readers increment workers_in_loop and then read current_loop
  //
  // - Writers wishing to deallocate *current_loop must first clear
  //   current_loop and then wait for workers_in_loop==0
  std::atomic<ThreadPoolLoop *> current_loop{nullptr};
  std::atomic<unsigned> workers_in_loop{0};
};

class ThreadPoolLoop {
 public:
   ThreadPoolLoop(std::function<void(unsigned)> f, unsigned t) : fn(std::move(f)), threads_needed(t) {
   }

  const std::function<void(unsigned)> fn;
  const unsigned threads_needed;

 private:
  ORT_DISALLOW_COPY_ASSIGNMENT_AND_MOVE(ThreadPoolLoop);
};

template <typename Work, typename Tag, unsigned kSize>
class RunQueue {
 public:
  RunQueue() : front_(0), back_(0) {
    // require power-of-two for fast masking
    assert((kSize & (kSize - 1)) == 0);
    assert(kSize > 2);            // why would you do this?
    assert(kSize <= (64 << 10));  // leave enough space for counter
    for (unsigned i = 0; i < kSize; i++) array_[i].state.store(ElemState::kEmpty, std::memory_order_relaxed);
  }

  ~RunQueue() {
    assert(Size() == 0);
  }

  // PushFront inserts w at the beginning of the queue.
  // If queue is full returns w, otherwise returns default-constructed Work.
  Work PushFront(Work w) {
    unsigned front = front_.load(std::memory_order_relaxed);
    Elem& e = array_[front & kMask];
    ElemState s = e.state.load(std::memory_order_relaxed);
    if (s != ElemState::kEmpty ||
        !e.state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire))
      return w;
    front_.store(front + 1 + (kSize << 1), std::memory_order_relaxed);
    e.w = std::move(w);
    e.tag = Tag();
    e.state.store(ElemState::kReady, std::memory_order_release);
    return Work();
  }

  // PopFront removes and returns the first element in the queue.
  // If the queue was empty returns default-constructed Work.
  Work PopFront() {
    unsigned front;
    Elem *e;
    ElemState s;

    // Drain revoked items from the front of the queue.  CAS to busy to synchronize with
    // any attempt to take the same item from the back of the queue.
    do {
      front = front_.load(std::memory_order_relaxed);
      e = &array_[(front - 1) & kMask];
      s = e->state.load(std::memory_order_relaxed);
      if (s == ElemState::kRevoked &&
          e->state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire)) {
        e->state.store(ElemState::kEmpty, std::memory_order_release);
        front = ((front - 1) & kMask2) | (front & ~kMask2);
        front_.store(front, std::memory_order_relaxed);
      }
    } while (s == ElemState::kRevoked);

    // Attempt to take next item.  State kEmpty shows the queue is empty, kBusy shows
    // the work is in progress on the item at the front of the queue.
    if (s != ElemState::kReady ||
        !e->state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire))
      return Work();
    Work w = std::move(e->w);
    e->tag = Tag();
    e->state.store(ElemState::kEmpty, std::memory_order_release);
    front = ((front - 1) & kMask2) | (front & ~kMask2);
    front_.store(front, std::memory_order_relaxed);
    return w;
  }

  // PushBack adds w at the end of the queue.
  // If queue is full returns w, otherwise returns default-constructed Work.
  Work PushBack(Work w) {
    std::unique_lock<OrtMutex> lock(mutex_);
    unsigned back = back_.load(std::memory_order_relaxed);
    Elem& e = array_[(back - 1) & kMask];
    ElemState s = e.state.load(std::memory_order_relaxed);
    if (s != ElemState::kEmpty ||
        !e.state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire))
      return w;
    back = ((back - 1) & kMask2) | (back & ~kMask2);
    back_.store(back, std::memory_order_relaxed);
    e.w = std::move(w);
    e.tag = Tag();
    e.state.store(ElemState::kReady, std::memory_order_release);
    return Work();
  }

  // PushBackWithTag adds w at the end of the queue.  The tag value can be used on a 
  // subsequent call to RevokeWithTag to remove the item from the queue in combination
  // with w_idx.  Typically the tag will be a per-thread ID to distinguish work
  // submitted from different threads.
  //
  // If the queue is full, returns w, otherwise returns default-constructed work.
  Work PushBackWithTag(Work w, Tag tag, unsigned &w_idx) {
    std::unique_lock<OrtMutex> lock(mutex_);
    unsigned back = back_.load(std::memory_order_relaxed);
    w_idx = (back-1) & kMask;
    Elem& e = array_[w_idx];
    ElemState s = e.state.load(std::memory_order_relaxed);
    if (s != ElemState::kEmpty ||
        !e.state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire))
      return w;
    back = ((back - 1) & kMask2) | (back & ~kMask2);
    back_.store(back, std::memory_order_relaxed);
    e.w = std::move(w);
    e.tag = tag;
    e.state.store(ElemState::kReady, std::memory_order_release);
    return Work();
  }

  // PopBack removes and returns the last elements in the queue.
  Work PopBack() {
    if (Empty())
      return Work();
    std::unique_lock<OrtMutex> lock(mutex_);
    unsigned back;
    Elem *e;
    ElemState s;

    // Drain revoked items from the back of the queue.  CAS to busy to synchronize with
    // any attempt to take the same item from the front of the queue.
    do {
      back = back_.load(std::memory_order_relaxed);
      e = &array_[back & kMask];
      s = e->state.load(std::memory_order_relaxed);
      if (s == ElemState::kRevoked &&
          e->state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire)) {
        e->state.store(ElemState::kEmpty, std::memory_order_release);
        back_.store(back + 1 + (kSize << 1), std::memory_order_relaxed);
      }
    } while (s == ElemState::kRevoked);

    if (s != ElemState::kReady ||
        !e->state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire))
      return Work();
    Work w = std::move(e->w);
    e->tag = Tag();
    e->state.store(ElemState::kEmpty, std::memory_order_release);
    back_.store(back + 1 + (kSize << 1), std::memory_order_relaxed);
    return w;
  }

  // RevokeItem removes a work item from the queue.  Items are identified positionally,
  // and so a tag is used to detect whether the same position is occupied by a 
  // different work item at the time of removal.  RevokeWithTags lets threads offer work
  // for parallel execution, and then revoke the offer prior to the work executing (for 
  // instance if the thread itself completes all of the work).  Revoking the work 
  // lets the thread deallocate state that might otherwise have been captured by the work item
  // and accessed by it.
  //
  // Return true iff the item is successfully revoked.  If the item is not revoked then
  // the caller must assume that it may still execute, for instance because it
  // has been pop'd from the queue concurrent with the revocation request.

  bool RevokeWithTag(Tag tag, unsigned w_idx) {
    bool revoked = false;
    std::unique_lock<OrtMutex> lock(mutex_);
    Elem& e = array_[w_idx];
    ElemState s = e.state.load(std::memory_order_relaxed);

    // We have acquired a lock on the queue, synchronizing with
    // operations aside from the PopFront fast-path.  Synchronize with
    // that by attempting the same kReady->kBusy transition via CAS.

    if (s == ElemState::kReady &&
        e.state.compare_exchange_strong(s, ElemState::kBusy, std::memory_order_acquire)) {
      if (e.tag == tag) {
        unsigned back = back_.load(std::memory_order_relaxed);
        unsigned back_idx = back & kMask;
        if (back_idx != w_idx) {
          // Item is not at the back of the queue, mark it in-place as revoked
          e.tag = Tag();
          e.w = Work();
          e.state.store(ElemState::kRevoked, std::memory_order_release);
          revoked = true;
        } else {
          // Item being removed as still at the back; shift the back pointer over it,
          // and bump the version number.
          e.tag = Tag();
          e.w = Work();
          e.state.store(ElemState::kEmpty, std::memory_order_release);
          back_.store(back + 1 + (kSize << 1), std::memory_order_relaxed);
          revoked = true;
        }
      } else {
        // Tag mismatch, i.e. work queue slot re-used
        e.state.store(ElemState::kReady, std::memory_order_release);
      }
    }
    return revoked;
  }

  // Size returns current queue size.
  // Can be called by any thread at any time.
  unsigned Size() const {
    return SizeOrNotEmpty<true>();
  }

  // Empty tests whether container is empty.
  // Can be called by any thread at any time.
  bool Empty() const {
    return SizeOrNotEmpty<false>() == 0;
  }

  // Delete all the elements from the queue.
  void Flush() {
    while (!Empty()) {
      PopFront();
    }
  }

 private:
  static const unsigned kMask = kSize - 1;
  static const unsigned kMask2 = (kSize << 1) - 1;

  enum class ElemState : uint8_t {
    kEmpty,
    kBusy,
    kReady,
    kRevoked,
  };

  // Updates to an element are bracketed by a std::memory_order_acquire
  // load from the state, and a std::memory_order_release store.  Accesses
  // to the front/back indices for the work queue use relaxed semantics,
  // with the state of the elements being authoritative.
  //
  // TODO: Revisit whether there is a significant benefit for the current
  // workloads in the complexity here.
  struct Elem {
    std::atomic<ElemState> state;
    Tag tag;
    Work w;
  };

  OrtMutex mutex_;

  // Low log(kSize) + 1 bits in front_ and back_ contain rolling index of
  // front/back, respectively. The remaining bits contain modification counters
  // that are incremented on Push operations. This allows us to (1) distinguish
  // between empty and full conditions (if we would use log(kSize) bits for
  // position, these conditions would be indistinguishable); (2) obtain
  // consistent snapshot of front_/back_ for Size operation using the
  // modification counters.
  ORT_ALIGN_TO_AVOID_FALSE_SHARING std::atomic<unsigned> front_;
  ORT_ALIGN_TO_AVOID_FALSE_SHARING std::atomic<unsigned> back_;
  ORT_ALIGN_TO_AVOID_FALSE_SHARING Elem array_[kSize];

  // SizeOrNotEmpty returns current queue size; if NeedSizeEstimate is false,
  // only whether the size is 0 is guaranteed to be correct.
  // Can be called by any thread at any time.
  template <bool NeedSizeEstimate>
  unsigned SizeOrNotEmpty() const {
    // Emptiness plays critical role in thread pool blocking. So we go to great
    // effort to not produce false positives (claim non-empty queue as empty).
    unsigned front = front_.load(std::memory_order_acquire);
    for (;;) {
      // Capture a consistent snapshot of front/tail.
      unsigned back = back_.load(std::memory_order_acquire);
      unsigned front1 = front_.load(std::memory_order_relaxed);
      if (front != front1) {
        front = front1;
        std::atomic_thread_fence(std::memory_order_acquire);
        continue;
      }
      if (NeedSizeEstimate) {
        return CalculateSize(front, back);
      }
        // This value will be 0 if the queue is empty, and undefined otherwise.
        unsigned maybe_zero = ((front ^ back) & kMask2);
        // Queue size estimate must agree with maybe zero check on the queue
        // empty/non-empty state.
        eigen_assert((CalculateSize(front, back) == 0) == (maybe_zero == 0));
        return maybe_zero;
    }
  }

  EIGEN_ALWAYS_INLINE
  unsigned CalculateSize(unsigned front, unsigned back) const {
    int size = (front & kMask2) - (back & kMask2);
    // Fix overflow.
    if (size < 0)
      size += 2 * kSize;
    // Order of modification in push/pop is crafted to make the queue look
    // larger than it is during concurrent modifications. E.g. push can
    // increment size before the corresponding pop has decremented it.
    // So the computed size can be up to kSize + 1, fix it.
    if (size > static_cast<int>(kSize))
      size = kSize;
    return static_cast<unsigned>(size);
  }

  RunQueue(const RunQueue&) = delete;
  void operator=(const RunQueue&) = delete;
};

static std::atomic<uint32_t> next_tag{1};

template <typename Environment>
class ThreadPoolTempl : public onnxruntime::concurrency::ExtendedThreadPoolInterface {

 private:
  struct PerThread;

  static unsigned WorkerLoop(int id, Eigen::ThreadPoolInterface* param) {
    // unsafe downcast
    ThreadPoolTempl* this_ptr = (ThreadPoolTempl*)param;
    this_ptr->WorkerLoop(id);
    return 0;
  }

 public:
  struct Tag {
    constexpr Tag() : v_(0) {
    }

    Tag(uint32_t v) : v_(v) {
    }

    // Allocate a new tag to use to identify work items from a given
    // thread in a parallel section.  Ideally, threads will have
    // unique tags, but re-use is not incorrect if the counter wraps
    // (for intsance, if a long-running workload is calling into ORT
    // from a fresh thread for each request).  We must not re-use the
    // default tag 0 which is used to identify work items added via
    // Schedule as opposed to requests for help in parallel sections.

    static Tag GetNext() {
      Tag t = Tag(next_tag++);
      if (t.v_ == 0) {
        t = Tag(next_tag++);
      }
      return t;
    }

    uint32_t Get() const {
      return v_;
    }

    bool operator==(Tag& other) const {
      return v_ == other.v_;
    }

    uint32_t v_ = 0;
  };

  typedef std::function<void()> Task;
  typedef RunQueue<Task, Tag, 1024> Queue;
#ifdef _WIN32
  using CHAR_TYPE = wchar_t;
#else
  using CHAR_TYPE = char;
#endif
  ThreadPoolTempl(const CHAR_TYPE* name, int num_threads, bool allow_spinning, Environment& env,
                  const ThreadOptions& thread_options)
      : env_(env),
        num_threads_(num_threads),
        allow_spinning_(allow_spinning),
        set_denormal_as_zero_(thread_options.set_denormal_as_zero),
        worker_data_(num_threads),
        all_coprimes_(num_threads),
        blocked_(0),
        done_(false),
        cancelled_(false) {

    // Calculate coprimes of all numbers [1, num_threads].
    // Coprimes are used for random walks over all threads in Steal
    // and NonEmptyQueueIndex. Iteration is based on the fact that if we take
    // a random starting thread index t and calculate num_threads - 1 subsequent
    // indices as (t + coprime) % num_threads, we will cover all threads without
    // repetitions (effectively getting a presudo-random permutation of thread
    // indices).
    for (int i = 1; i <= num_threads_; ++i) {
      all_coprimes_.emplace_back(i);
      ComputeCoprimes(i, &all_coprimes_.back());
    }

    // Allocate space for per-thread bits to indicate which threads to consider
    // preferable for pushing work.  We use a regular array given that a std::vector
    // cannot contain std::atomic.
    num_hint_words_ = static_cast<int>((num_threads_ + bits_per_hint_word_ - 1) / bits_per_hint_word_);
    good_worker_hints_ = onnxruntime::make_unique<std::atomic<uint64_t>[]>(num_hint_words_);

    worker_data_.resize(num_threads_);
    for (int i = 0; i < num_threads_; i++) {
      worker_data_[i].thread.reset(env_.CreateThread(name, i, WorkerLoop, this, thread_options));
    }
  }

  ~ThreadPoolTempl() override {
    done_ = true;

    // Now if all threads block without work, they will start exiting.
    // But note that threads can continue to work arbitrary long,
    // block, submit new work, unblock and otherwise live full life.
    if (!cancelled_) {
      WakeAllWorkersForExit();
    } else {
      // Since we were cancelled, there might be entries in the queues.
      // Empty them to prevent their destructor from asserting.
      for (size_t i = 0; i < worker_data_.size(); i++) {
        worker_data_[i].queue.Flush();
      }
    }
    // Join threads explicitly (by destroying) to avoid destruction order within
    // this class.
    for (size_t i = 0; i < worker_data_.size(); ++i) worker_data_[i].thread.reset();
  }

  // Run fn().  Ordinarily, the function will be added to the thread pool and executed
  // by a worker thread.  If the thread pool rejects the work then fn() will instead
  // execute synchronously during Schedule(fn).  Currently the thread pool will only
  // reject work if the queue of pending work is full.

  void Schedule(std::function<void()> fn) override {
    PerThread* pt = GetPerThread();
    if (pt->pool == this) {
      // Worker thread of this pool, push onto the thread's queue.
      Queue& q = worker_data_[pt->thread_id].queue;
      fn = q.PushFront(std::move(fn));
    } else {
      // A free-standing thread (or worker of another pool), push onto a random
      // queue.
      int q_idx = Rand(&pt->rand) % num_threads_;
      WorkerData &td = worker_data_[q_idx];
      Queue& q = td.queue;
      fn = q.PushBack(std::move(fn));
      if (!fn) {
        // The queue accepted the work; ensure that the thread will pick it up
        td.EnsureAwake();
      }
    }

    // Run the work directly if the queue rejected the work
    if (fn) fn();
  }

// The thread pool maintains a set of hints for which threads will be good to distribute
// work to.  A thread is considered "good" if it is actively spinning, meaning both that
// it is not busy with existing work, and that it should respond quickly to the addition
// of new work.

void SetGoodWorkerHint(int idx, bool is_good) {
  assert(idx >= 0 && idx < num_threads_);
  std::atomic<uint64_t>& u64 = good_worker_hints_[idx / bits_per_hint_word_];
  uint64_t bit = 1ull << (idx % bits_per_hint_word_);
  uint64_t saw, want;
  do {
    saw = u64.load();
    want = is_good ? (saw|bit) : (saw&~bit);
  } while (!u64.compare_exchange_weak(saw, want));
}

// Retrieve hints for up to n threads to distribute work to.  Threads in good_hints
// pass a best-effort check to identify spinning threads via the good_worker_hints_
// bitmap.  Threads in alt_hint do not pass that test, but are distinct from those in
// good_hints, letting the caller avoid distributing more than one work item to
// any individual thread.

void GetGoodWorkerHints(unsigned n, std::vector<unsigned>& good_hints, std::vector<unsigned>& alt_hints) {
  PerThread* pt = GetPerThread();
  unsigned need_alt = n;
  good_hints.clear();
  alt_hints.clear();

  // Iterate through the words of hints, starting from a pseudo-randomly chosen
  // base.  This aims to distribute work across large machines in cases we
  // have multiple threads scheduling work concurrently.

  unsigned base = Rand(&pt->rand) % num_hint_words_;
  for (unsigned i = 0u; n && (i < num_hint_words_); i++) {
    int u64_idx = (base + i) % num_hint_words_;
    std::atomic<uint64_t>* u64 = &good_worker_hints_[u64_idx];
    uint64_t saw = u64->load();
    uint64_t want = saw;

    // Pick up to n bits that are set in the current word
    for (unsigned j = 0u; n && (j < bits_per_hint_word_); j++) {
      uint64_t bit = 1ull << j;
      int thread = u64_idx * bits_per_hint_word_ + j;
      if (saw & bit) {
        good_hints.push_back(thread);
        want &= ~bit;
        n--;
      } else if (need_alt && thread < num_threads_) {
        alt_hints.push_back(thread);
	      need_alt--;
      }
    }

    // Best-effort attempt to remove the hints.  We should measure the impact of
    // contention here, but the intuition is that if we conflict on the CAS then the
    // machine is likely to be busy in any case, and we will have queuing on the
    // work items.
    u64->compare_exchange_strong(saw, want);
  }
}

//......................................................................
//
// Parallel sections
// -----------------
//
// Allocate a new ThreadPoolParallelSection, owned by the returned
// unique_ptr.  The explicit deleter avoids the Eigen-specific
// definition of ThreadPoolParallelSection needing to be avilable in
// threadpool.h where the user-facing parallel section API is defined.

std::unique_ptr<ThreadPoolParallelSection, void(*)(ThreadPoolParallelSection*)> AllocateParallelSection() override {
  return std::unique_ptr<ThreadPoolParallelSection, void(*)(ThreadPoolParallelSection*)>
    (new ThreadPoolParallelSection,
     [](ThreadPoolParallelSection *tps) {
      delete tps;
    });
}

// Start a parallel section, using a caller-provided
// ThreadPoolParallelSection for maintaining the per-section state.
// Starting a parallel section is just book-keeping; threads are
// "summoned" to help with the parallel section once it enters
// parallel loops.  The threads are then retained until the end of the
// section, being re-used over subsequent loops.

void StartParallelSectionInternal(PerThread &pt,
                                  ThreadPoolParallelSection &ps) {
  assert((!pt.leading_par_section) && "Nested parallelism not supported");
  assert((!ps.active) && "Starting parallel section, but active already");
  pt.leading_par_section = true;
  if (!pt.tag.Get()) {
    pt.tag = Tag::GetNext();
  }
  ps.active = true;
}

void StartParallelSection(ThreadPoolParallelSection &ps) override {
  PerThread* pt = GetPerThread();
  StartParallelSectionInternal(*pt, ps);
}

// End a parallel section, waiting for all worker threads to exit from
// section.  Hence, on return, the ThreadPoolParallelSection object
// can be dealloacted.

void EndParallelSectionInternal(PerThread &pt,
                                ThreadPoolParallelSection &ps) {
  assert((pt.leading_par_section) && "Ending parallel section, but none started");
  assert((ps.active) && "Ending parallel section, but not active");
  pt.leading_par_section = false;

  // Notify workers to exit from the section
  ps.active = false;

  // Attempt to revoke any tasks that were sent to workers but not
  // started.
  unsigned tasks_started = static_cast<unsigned>(ps.tasks.size());
  unsigned tasks_revoked = 0;
  while (!ps.tasks.empty()) {
    const auto& item = ps.tasks.back();
    Queue& q = worker_data_[item.first].queue;
    if (q.RevokeWithTag(pt.tag, item.second)) {
      tasks_revoked++;
    }
    ps.tasks.pop_back();
  }

  // Wait for workers to exit ParLoopWorker
  auto tasks_to_wait_for = tasks_started - tasks_revoked;
  while (ps.tasks_finished < tasks_to_wait_for) {
    onnxruntime::concurrency::SpinPause();
  }

  // Clear status to allow the ThreadPoolParallelSection to be
  // re-used.
  ps.tasks_finished = 0;
}

void EndParallelSection(ThreadPoolParallelSection &ps) override {
  PerThread* pt = GetPerThread();
  EndParallelSectionInternal(*pt, ps);
}

//......................................................................
//
// Parallel loops
// --------------
//
// Ensure that the ThreadPoolParallelSection has sufficient workers to
// execute a loop with degree of parallelism n.  We track the number
// of workers already avaiable to the parallel section, prior to
// submitting tasks to the work queues to make up the total.
//
// Each worker will call in to worker_fn(idx) with a per-worker thread
// ID.  Note there are different levels of indirection here:
//
// - In a single-loop parallel section, worker_fn will directly
//   execute the threadpool.cc code that implements the parallel loop.
//
// - In a multi-loop parallel section, worker_fn is an intermediate
//   function that is long-lived (i.e., that lasts until the end of
//   the parallel section, as opposed to just a single loop's
//   duration).

void SummonWorkers(PerThread &pt,
                   ThreadPoolParallelSection &ps,
                   unsigned n,
                   const std::function<void(unsigned)> &worker_fn) {
  // Wrap the user's worker function with one that allocates a unique
  // worker index for the loop, and synchronizes (as the last step)
  // with the exit path in EndParallelSection.  In principle we could
  // allocate worker IDs during the loop below and capture them by
  // value.  However, the costs of creating distinct lambda for each
  // iteration appeared more costly than the cost of synchronization
  // on a shared counter.
  auto call_worker_fn = [&ps, worker_fn]() {
    unsigned my_idx = ++ps.worker_idx;
    worker_fn(my_idx);
    // After the assignment to ps.tasks_finished, the stack-allocated
    // ThreadPoolParallelSection object may be destroyed.
    ps.tasks_finished++;
  };

  // Identify whether we need to create additional workers.
  // Throughout the threadpool implementation, degrees of parallelism
  // ("n" here) refer to the total parallelism including the main
  // thread.  Hence we consider the number of existing tasks + 1.
  unsigned current_dop = static_cast<unsigned>(ps.tasks.size()) + 1;
  if (n > current_dop) {
    unsigned extra_needed = n - current_dop;

    // Obtain hints for which worker threads to push the tasks to.
    // This uses a best-effort assessment of which threads are
    // spinning.
    std::vector<unsigned> good_hints, alt_hints;
    GetGoodWorkerHints(extra_needed, good_hints, alt_hints);

    // Create the additional tasks, and push them to workers.
    for (auto i = 0u; i < extra_needed; i++) {
      Task t;
      int q_idx;
      if (i < good_hints.size()) {
        q_idx = good_hints[i];
      } else {
        auto alt_i = i - static_cast<unsigned>(good_hints.size());
        if (alt_i < alt_hints.size()) {
          q_idx = alt_hints[alt_i];
        } else {
          q_idx = Rand(&pt.rand) % num_threads_;
        }
      }

      // If the worker's queue accepts the task, then record it in
      // the vector of tasks that we will need to synchronize with on
      // exiting the parallel section.  If the queue rejects the task
      // (perhaps because it is full) then we take no further action:
      // in a parallel loop we will always be running work on the
      // main thread, providing progress.
      WorkerData& td = worker_data_[q_idx];
      Queue& q = td.queue;
      unsigned w_idx;
      t = q.PushBackWithTag(call_worker_fn, pt.tag, w_idx);
      if (!t) {
        ps.tasks.push_back({q_idx, w_idx});
        td.EnsureAwake();
      }
    }
  }
}

// Run a single parallel loop in an existing parallel section.  This
// maps directly onto SummonWorkers to create sufficient worker
// threads for the desired degree of parallelism, followed by
// dispatching the loop to those workers.

void RunInParallelSection(ThreadPoolParallelSection &ps,
                          std::function<void(unsigned idx)> fn,
                          unsigned n) override {
  PerThread* pt = GetPerThread();
  assert(pt->leading_par_section && "RunInParallel, but not in parallel section");
  assert((n > 1) && "Trivial parallel section; should be avoided by caller");

  // Publish the work to any existing workers in the parallel
  // section, and ensure it is visible to any new threads created
  // below.
  assert((!ps.current_loop) && "RunInParallelSection, but loop already active");
  ThreadPoolLoop loop{std::move(fn), n};
  ps.current_loop = &loop;

  // Increase the worker count if needed.  Each worker will pick up
  // loops to execute from the current parallel section.
  const auto worker_fn = [&ps](unsigned my_idx) {
    while (ps.active) {
      if (!ps.current_loop) {
        onnxruntime::concurrency::SpinPause();
      } else {
        ps.workers_in_loop++;
        ThreadPoolLoop *work_item = ps.current_loop;
        if (work_item && my_idx < work_item->threads_needed) {
          work_item->fn(my_idx);
        }
        ps.workers_in_loop--;
      }
    }
  };
  SummonWorkers(*pt, ps, n, worker_fn);

  // Run work in the main thread
  loop.fn(0);

  // Wait for workers to exit the loop
  ps.current_loop = 0;
  while (ps.workers_in_loop) {
    onnxruntime::concurrency::SpinPause();
  }
}

// Run a single parallel loop _without_ a parallel section.  This is a
// special case of RunInParallelSection, avoiding code paths for
// handing off multiple loops to the pool of workers.

void RunInParallel(std::function<void(unsigned idx)> fn, unsigned n) override {
  PerThread *pt = GetPerThread();
  ThreadPoolParallelSection ps;
  StartParallelSectionInternal(*pt, ps);

  // Summon workers to run the function (n is the desired maximum
  // degree of parallelism, including the main thread).  Unlike the
  // multi-loop RunInParallelSection, this single-loop worker can run
  // fn directly without needing to receive it via ps.current_loop.
  SummonWorkers(*pt, ps, n, fn);

  // Run work in the main thread
  fn(0);

  // Wait for workers to exit the parallel section and hence to have
  // completed the loop (i.e., ps.tasks_finished matches the number of
  // tasks that have been created less the number successfully
  // revoked).
  EndParallelSectionInternal(*pt, ps);
}

void Cancel() override {
  cancelled_ = true;
  // If done_ is true, which means this object is being destructing.
  // Therefore worker_data_[i].thread could be NULL.
  if (!done_) {
    done_ = true;
    // Let each thread know it's been cancelled.
    for (size_t i = 0; i < worker_data_.size(); i++) {
      assert(worker_data_[i].thread != nullptr);
      worker_data_[i].thread->OnCancel();
    }
  }

  // Wake up the threads without work to let them exit on their own.
  WakeAllWorkersForExit();
}

int NumThreads() const EIGEN_FINAL {
  return num_threads_;
}

int CurrentThreadId() const EIGEN_FINAL {
  const PerThread* pt = const_cast<ThreadPoolTempl*>(this)->GetPerThread();
  if (pt->pool == this) {
    return pt->thread_id;
  }
  return -1;
}

 private:

#ifdef NDEBUG
  void AssertBounds(int, int) {
  }
#else
  void AssertBounds(int start, int end) {
    assert(start >= 0);
    assert(start < end);  // non-zero sized partition
    assert(end <= num_threads_);
  }
#endif

  void ComputeCoprimes(int N, Eigen::MaxSizeVector<unsigned>* coprimes) {
    for (int i = 1; i <= N; i++) {
      unsigned a = i;
      unsigned b = N;
      // If GCD(a, b) == 1, then a and b are coprimes.
      while (b != 0) {
        unsigned tmp = a;
        a = b;
        b = tmp % b;
      }
      if (a == 1) {
        coprimes->push_back(i);
      }
    }
  }

  typedef typename Environment::EnvThread Thread;
  struct WorkerData;

  // PerThread objects are allocated in thread-local storage and allocated
  // on the thread's first call to GetPerThread.  The object should
  // remain trivially-destructable, with other state placed in the
  // WorkerData objects that are allocated and cleaned-up explicitly.
  //
  // PerThread objects are allocated for all threads that submit work to
  // the thread pool, in addition to threads within the pool.
  //
  // In contrast, the WorkerData objects are allocated only for the
  // threads in the pool, and their lifetime is managed along with the
  // pool.

  struct PerThread {
    constexpr PerThread() : pool(nullptr) {
    }
    ThreadPoolTempl* pool;            // Parent pool, or null for normal threads.
    uint64_t rand{0};                 // Random generator state.
    int thread_id{-1};                // Worker thread index in pool.
    Tag tag{};                        // Work item tag used to identify this thread.
    bool leading_par_section{false};  // Leading a parallel section (used only for asserts)
  };

  static_assert(std::is_trivially_destructible<PerThread>::value,
                "Per-thread state should be trivially destructible");

  struct WorkerData {
    constexpr WorkerData() : thread(), queue() {
    }
    std::unique_ptr<Thread> thread;
    Queue queue;

    // Each thread has a status, available read-only without locking, and protected
    // by the mutex field below for updates.  The status is used for three
    // purposes:
    //
    // 1. To identify threads that are good candidates to push work to.
    //    We prefer to push work to threads that are actively spinning (no need
    //    for an OS wake-up, and no need for current work to finish).  After that, we
    //    prefer to push work to threads that are blocked (no need to wait for the
    //    current work to finish).
    //
    // 2. To identify threads that are good candidates to steal work from.  We
    //    prefer to steal work from threads that are active outside the worker loop.
    //    This avoids "snatching" new work away from a thread that has just been
    //    given it but not yet noticed.
    //
    // 3. When pushing work to a thread, we use the status read-only to identify
    //    when we need to wake the thread.  This read-only check avoids the
    //    need for mutex / condvar operations in the case where the thread pool
    //    remains busy.

    enum class ThreadStatus : uint8_t {
      Spinning,  // Spinning in the work loop, and other cases (initialization) where
                 // the thread will soon be in the loop
      Active,    // Running user code, not waiting for work
      Blocking,  // In the process of blocking; may no longer notice work pushed to it
      Blocked,   // Blocked on cv
      Waking,    // Not yet back in the worker loop, but wake-up notification sent
    };

    ThreadStatus GetStatus() const {
      return status;
    }

    // State transitions, called from other threads

    void EnsureAwake() {
      ThreadStatus seen = status;
      if (seen == ThreadStatus::Blocking ||
          seen == ThreadStatus::Blocked) {
        std::unique_lock<OrtMutex> lk(mutex);
        // Blocking state exists only transiently during the SetBlock() method
        // while holding the lock.  We may observe it at the start of this
        // function, but after acquiring the lock then the target thread
        // will either be blocked or not.
        seen = status;
        assert(seen != ThreadStatus::Blocking);
        if (seen == ThreadStatus::Blocked) {
          status = ThreadStatus::Waking;
          cv.notify_one();
        }
      }
    }

    // State transitions, called only from the thread itself

    void SetActive() {
      std::unique_lock<OrtMutex> lk(mutex);
      status = ThreadStatus::Active;
    }

    void SetSpinning() {
      std::unique_lock<OrtMutex> lk(mutex);
      status = ThreadStatus::Spinning;
    }

    void SetBlocked(std::function<bool()> should_block,
                    std::function<void()> post_block) {
      std::unique_lock<OrtMutex> lk(mutex);
      assert(status == ThreadStatus::Spinning);
      status = ThreadStatus::Blocking;
      if (should_block()) {
        status = ThreadStatus::Blocked;
        while (status == ThreadStatus::Blocked) {
          cv.wait(lk);
        }
        post_block();
      }
      status = ThreadStatus::Spinning;
    }

  private:
    std::atomic<ThreadStatus> status{ThreadStatus::Spinning};
    OrtMutex mutex;
    OrtCondVar cv;
  };

  Environment& env_;
  const int num_threads_;
  const bool allow_spinning_;
  const bool set_denormal_as_zero_;
  Eigen::MaxSizeVector<WorkerData> worker_data_;
  Eigen::MaxSizeVector<Eigen::MaxSizeVector<unsigned>> all_coprimes_;
  std::atomic<unsigned> blocked_;  // Count of blocked workers, used as a termination condition
  std::atomic<bool> done_;
  std::atomic<bool> cancelled_;

  // Allow control over how many bits to use in each entry in good_worker_hints_.
  // We reduce this below the full 64-bit word size for two reasons.  First, it
  // helps test coverage on machines without 64 vCPUS.  Second, it lets us
  // reduce contention by having different threads start work searching for hints
  // at different locations in the bitmap.

  static const unsigned bits_per_hint_word_ = 4;
  unsigned num_hint_words_;
  std::unique_ptr<std::atomic<uint64_t>[]> good_worker_hints_;

  // Wake any blocked workers so that they can cleanly exit WorkerLoop().  For an
  // abrupt exit, cancelled_==true and threads will exit their worker loops.  For
  // a clean exit, each thread will observe (1) done_ set, indicating that the
  // destructor has been called, (2) all threads blocked, and (3) no
  // items in the work queues.

  void WakeAllWorkersForExit() {
    for (auto &td: worker_data_) {
      td.EnsureAwake();
    }
  }

  // Main worker thread loop.
  void WorkerLoop(int thread_id) {
    PerThread* pt = GetPerThread();
    WorkerData& td = worker_data_[thread_id];
    Queue& q = td.queue;
    bool should_exit = false;
    pt->pool = this;
    pt->rand = GlobalThreadIdHash();
    pt->thread_id = thread_id;

    assert(td.GetStatus() == WorkerData::ThreadStatus::Spinning);
    SetGoodWorkerHint(thread_id, true /* Is good */);

    const int log2_spin = 20;
    const int spin_count = allow_spinning_ ? (1ull<<log2_spin) : 0;
    const int steal_count = spin_count/100;

    SetDenormalAsZero(set_denormal_as_zero_);

    while (!cancelled_ && !should_exit) {
        Task t = q.PopFront();
        if (!t) {
          // Spin waiting for work.  We indicate, via SetGOodWorkerHint that we are
          // spinning.  This will bias other threads toward pushing work to our queue.
          // In addition, priodically make a best-effort attempt to steal from other
          // threads which are not themselves spinning.

          SetGoodWorkerHint(thread_id, true);
          for (int i = 0; i < spin_count && !t && !cancelled_ && !done_; i++) {
            t = ((i+1)%steal_count == 0) ? TrySteal() : q.PopFront();
            onnxruntime::concurrency::SpinPause();
          }
          SetGoodWorkerHint(thread_id, false);

          if (!t) {
            // No work passed to us while spinning; make a further full attempt to
            // steal work from other threads prior to blocking.
            if (num_threads_ != 1) {
              t = Steal(true /* true => check all queues */);
            }
            if (!t) {
              td.SetBlocked(
                  // Pre-block test
                  [&]() -> bool {
                    bool should_block = true;
                    // We already did a best-effort emptiness check when stealing; now
                    // do a full check prior to blocking.
                    int victim = NonEmptyQueueIndex();
                    if (victim != -1) {
                      should_block = false;
                      if (!cancelled_) {
                        t = worker_data_[victim].queue.PopBack();
                      }
                    }
                    // Number of blocked threads is used as termination condition.
                    // If we are shutting down and all worker threads blocked without work,
                    // that's we are done.
                    if (should_block) {
                      blocked_++;
                      if (done_ && blocked_ == static_cast<unsigned>(num_threads_)) {
                        should_block = false;
                        // Almost done, but need to re-check queues.
                        // Consider that all queues are empty and all worker threads are preempted
                        // right after incrementing blocked_ above. Now a free-standing thread
                        // submits work and calls destructor (which sets done_). If we don't
                        // re-check queues, we will exit leaving the work unexecuted.
                        if (NonEmptyQueueIndex() != -1) {
                          // Note: we must not pop from queues before we decrement blocked_,
                          // otherwise the following scenario is possible. Consider that instead
                          // of checking for emptiness we popped the only element from queues.
                          // Now other worker threads can start exiting, which is bad if the
                          // work item submits other work. So we just check emptiness here,
                          // which ensures that all worker threads exit at the same time.
                          blocked_--;
                        } else {
                          should_exit = true;
                        }
                      }
                    }
                    return should_block;
                  },
                  // Post-block update (executed only if we blocked)
                  [&]() {
                    blocked_--;
                  });
            }
          }
        }
        if (t) {
          td.SetActive();
          t();
          td.SetSpinning();
        }
      }

      // Whichever thread(s) observe the termination conditions are responsible for waking
      // any other threads that have remained blocked.
      if (should_exit) {
        WakeAllWorkersForExit();
      }
    }

  // Steal tries to steal work from other worker threads in the range [start,
  // limit) in best-effort manner.  We make two passes over the threads:
  //
  // - round 0 : we attempt to steal from threads that are running in
  //   user code (ThreadStatus::Active).  The intuition behind this is that
  //   the thread is busy with other work, and that by preferring to
  //   steel from busy victims we will avoid "snatching" work from a
  //   thread which is just about to notice the work itself.
  //
  // - round 1 : we steal work from any thread, including those which claim
  //   to be spinning.  In these cases, even though the victim thread is
  //   looking for work itself, it may have been pre-empted.

  Task Steal(bool check_all) {
    PerThread* pt = GetPerThread();
    unsigned size = static_cast<unsigned>(num_threads_);
    unsigned r = Rand(&pt->rand);
    unsigned inc = all_coprimes_[size - 1][r % all_coprimes_[size - 1].size()];

    for (int round = 0; round < 2; round++) {
      unsigned victim = r % size;
      for (unsigned i = 0; i < size; i++) {
        assert(victim < size);
        if (round == 1 ||
            worker_data_[victim].GetStatus() == WorkerData::ThreadStatus::Active) {
          Task t = worker_data_[victim].queue.PopBack();
          if (t) {
            return t;
          }
        }
        if (!check_all) {
          return Task();
        }
        victim += inc;
        if (victim >= size) {
          victim -= size;
        }
      }
    }

    return Task();
  }

  Task TrySteal() {
    return Steal(false);
  }

  int NonEmptyQueueIndex() {
    PerThread* pt = GetPerThread();
    const unsigned size = static_cast<unsigned>(worker_data_.size());
    unsigned r = Rand(&pt->rand);
    unsigned inc = all_coprimes_[size - 1][r % all_coprimes_[size - 1].size()];
    unsigned victim = r % size;
    for (unsigned i = 0; i < size; i++) {
      if (!worker_data_[victim].queue.Empty()) {
        return victim;
      }
      victim += inc;
      if (victim >= size) {
        victim -= size;
      }
    }
    return -1;
  }

  static EIGEN_STRONG_INLINE uint64_t GlobalThreadIdHash() {
    return std::hash<std::thread::id>()(std::this_thread::get_id());
  }

  static EIGEN_STRONG_INLINE PerThread* GetPerThread() {
    static thread_local PerThread per_thread_;
    PerThread* pt = &per_thread_;
    return pt;
  }

  static EIGEN_STRONG_INLINE unsigned Rand(uint64_t* state) {
    uint64_t current = *state;
    // Update the internal state
    *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
    // Generate the random output (using the PCG-XSH-RS scheme)
    return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61)));
  }
};

 }  // namespace concurrency

}  // namespace onnxruntime