tnn_yolop.h
2.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
//
// Created by DefTruth on 2021/10/18.
//
#ifndef LITE_AI_TOOLKIT_TNN_CV_TNN_YOLOP_H
#define LITE_AI_TOOLKIT_TNN_CV_TNN_YOLOP_H
#include "lite/tnn/core/tnn_core.h"
namespace tnncv
{
class LITE_EXPORTS TNNYOLOP : public BasicTNNHandler
{
public:
explicit TNNYOLOP(const std::string &_proto_path,
const std::string &_model_path,
unsigned int _num_threads = 1); //
~TNNYOLOP() override = default;
private:
typedef struct
{
float r;
int dw;
int dh;
int new_unpad_w;
int new_unpad_h;
bool flag;
} YOLOPScaleParams;
private:
// In TNN: x*scale + bias
std::vector<float> scale_vals = {0.0171247f, 0.0175070f, 0.0174291f}; // RGB
std::vector<float> bias_vals = {-123.675f * 0.0171247f, -116.28f * 0.0175070f, -103.53f * 0.0174291f};
enum NMS
{
HARD = 0, BLEND = 1, OFFSET = 2
};
static constexpr const unsigned int max_nms = 30000;
private:
void transform(const cv::Mat &mat_rs) override; // without resize
void resize_unscale(const cv::Mat &mat,
cv::Mat &mat_rs,
int target_height,
int target_width,
YOLOPScaleParams &scale_params);
void generate_bboxes_da_ll(const YOLOPScaleParams &scale_params,
std::shared_ptr<tnn::Instance> &_instance,
std::vector<types::Boxf> &bbox_collection,
types::SegmentContent &da_seg_content,
types::SegmentContent &ll_seg_content,
float score_threshold, float img_height,
float img_width); // det,da_seg,ll_seg
void nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk, unsigned int nms_type);
public:
void detect(const cv::Mat &mat,
std::vector<types::Boxf> &detected_boxes,
types::SegmentContent &da_seg_content,
types::SegmentContent &ll_seg_content,
float score_threshold = 0.25f, float iou_threshold = 0.45f,
unsigned int topk = 100, unsigned int nms_type = NMS::OFFSET);
};
}
#endif //LITE_AI_TOOLKIT_TNN_CV_TNN_YOLOP_H