ncnn_scrfd.h
4.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
//
// Created by DefTruth on 2021/12/30.
//
#ifndef LITE_AI_TOOLKIT_NCNN_CV_NCNN_SCRFD_H
#define LITE_AI_TOOLKIT_NCNN_CV_NCNN_SCRFD_H
#include "lite/ncnn/core/ncnn_core.h"
namespace ncnncv
{
class LITE_EXPORTS NCNNSCRFD : public BasicNCNNHandler
{
public:
explicit NCNNSCRFD(const std::string &_param_path,
const std::string &_bin_path,
unsigned int _num_threads = 1,
int _input_height = 320,
int _input_width = 320);
~NCNNSCRFD() override = default;
private:
// nested classes
typedef struct
{
float cx;
float cy;
float stride;
} SCRFDPoint;
typedef struct
{
float ratio;
int dw;
int dh;
bool flag;
} SCRFDScaleParams;
private:
// blob = cv2.dnn.blobFromImage(img, 1.0/128, input_size, (127.5, 127.5, 127.5), swapRB=True)
const float mean_vals[3] = {127.5f, 127.5f, 127.5f}; // RGB
const float norm_vals[3] = {1.f / 128.f, 1.f / 128.f, 1.f / 128.f};
// multi-levels center points
int input_height = 320;
int input_width = 320;
unsigned int fmc = 3; // feature map count
bool use_kps = false;
unsigned int num_anchors = 2;
std::vector<int> feat_stride_fpn = {8, 16, 32}; // steps, may [8, 16, 32, 64, 128]
// if num_anchors>1, then stack points in col major -> (height*num_anchor*width,2)
// anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
std::unordered_map<int, std::vector<SCRFDPoint>> center_points;
bool center_points_is_update = false;
static constexpr const unsigned int nms_pre = 1000;
static constexpr const unsigned int max_nms = 30000;
private:
void transform(const cv::Mat &mat_rs, ncnn::Mat &in) override;
// initial steps and num_anchors
// https://github.com/deepinsight/insightface/blob/master/detection/scrfd/tools/scrfd.py
void initial_context();
void resize_unscale(const cv::Mat &mat,
cv::Mat &mat_rs,
int target_height,
int target_width,
SCRFDScaleParams &scale_params);
// generate once.
void generate_points(const int target_height, const int target_width);
void generate_bboxes_single_stride(const SCRFDScaleParams &scale_params,
ncnn::Mat &score_pred,
ncnn::Mat &bbox_pred,
unsigned int stride,
float score_threshold,
float img_height,
float img_width,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection);
void generate_bboxes_kps_single_stride(const SCRFDScaleParams &scale_params,
ncnn::Mat &score_pred,
ncnn::Mat &bbox_pred,
ncnn::Mat &kps_pred,
unsigned int stride,
float score_threshold,
float img_height,
float img_width,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection);
void generate_bboxes_kps(const SCRFDScaleParams &scale_params,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection,
ncnn::Extractor &extractor,
float score_threshold, float img_height,
float img_width); // rescale & exclude
void nms_bboxes_kps(std::vector<types::BoxfWithLandmarks> &input,
std::vector<types::BoxfWithLandmarks> &output,
float iou_threshold, unsigned int topk);
public:
void detect(const cv::Mat &mat, std::vector<types::BoxfWithLandmarks> &detected_boxes_kps,
float score_threshold = 0.25f, float iou_threshold = 0.45f,
unsigned int topk = 400);
};
}
#endif //LITE_AI_TOOLKIT_NCNN_CV_NCNN_SCRFD_H