Tensor.hpp
8.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//
// Tensor.hpp
// MNN
//
// Created by MNN on 2018/08/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef Tensor_hpp
#define Tensor_hpp
#include <vector>
#include <MNN/HalideRuntime.h>
#include <MNN/MNNDefine.h>
#define MNN_MAX_TENSOR_DIM 6
namespace MNN {
/**
* data container.
* data for host tensor is saved in `host` field. its memory is allocated malloc directly.
* data for device tensor is saved in `deviceId` field. its memory is allocated by session's backend.
* usually, device tensors are created by engine (like net, session).
* meanwhile, host tensors could be created by engine or user.
*/
class MNN_PUBLIC Tensor {
public:
struct InsideDescribe;
/** dimension type used to create tensor */
enum DimensionType {
/** for tensorflow net type. uses NHWC as data format. */
TENSORFLOW,
/** for caffe net type. uses NCHW as data format. */
CAFFE,
/** for caffe net type. uses NC4HW4 as data format. */
CAFFE_C4
};
/** handle type */
enum HandleDataType {
/** default handle type */
HANDLE_NONE = 0,
/** string handle type */
HANDLE_STRING = 1
};
/** Tensor map type : Read or Write*/
enum MapType {
/** map Tensor for writing data*/
MAP_TENSOR_WRITE = 0,
MAP_TENSOR_READ = 1
};
public:
/**
* @brief create a tensor with dimension size and type without acquire memory for data.
* @param dimSize dimension size.
* @param type dimension type.
*/
Tensor(int dimSize = 4, DimensionType type = CAFFE);
/**
* @brief create a tensor with same shape as given tensor.
* @param tensor shape provider.
* @param type dimension type.
* @param allocMemory acquire memory for data or not.
* @warning tensor data won't be copied.
*/
Tensor(const Tensor* tensor, DimensionType type = CAFFE, bool allocMemory = true);
/** deinitializer */
~Tensor();
private:
// remove all assignment operator
Tensor(const Tensor& tensor) = delete;
Tensor(const Tensor&& tensor) = delete;
Tensor& operator=(const Tensor&) = delete;
Tensor& operator=(const Tensor&&) = delete;
public:
/**
* @brief create tensor with shape, data type and dimension type.
* @param shape tensor shape.
* @param type data type.
* @param dimType dimension type.
* @return created tensor.
* @warning memory for data won't be acquired. call backend's onAcquireBuffer to get memory ready.
*/
static Tensor* createDevice(const std::vector<int>& shape, halide_type_t type, DimensionType dimType = TENSORFLOW);
/**
* @brief create tensor with shape and dimension type. data type is represented by `T`.
* @param shape tensor shape.
* @param dimType dimension type.
* @return created tensor.
* @warning memory for data won't be acquired. call backend's onAcquireBuffer to get memory ready.
*/
template <typename T>
static Tensor* createDevice(const std::vector<int>& shape, DimensionType dimType = TENSORFLOW) {
return createDevice(shape, halide_type_of<T>(), dimType);
}
/**
* @brief create tensor with shape, data type, data and dimension type.
* @param shape tensor shape.
* @param type data type.
* @param data data to save.
* @param dimType dimension type.
* @return created tensor.
*/
static Tensor* create(const std::vector<int>& shape, halide_type_t type, void* data = NULL,
DimensionType dimType = TENSORFLOW);
/**
* @brief create tensor with shape, data and dimension type. data type is represented by `T`.
* @param shape tensor shape.
* @param data data to save.
* @param dimType dimension type.
* @return created tensor.
*/
template <typename T>
static Tensor* create(const std::vector<int>& shape, void* data = NULL, DimensionType dimType = TENSORFLOW) {
return create(shape, halide_type_of<T>(), data, dimType);
}
public:
/**
* @brief for DEVICE tensor, copy data from given host tensor.
* @param hostTensor host tensor, the data provider.
* @return true for DEVICE tensor, and false for HOST tensor.
*/
bool copyFromHostTensor(const Tensor* hostTensor);
/**
* @brief for DEVICE tensor, copy data to given host tensor.
* @param hostTensor host tensor, the data consumer.
* @return true for DEVICE tensor, and false for HOST tensor.
*/
bool copyToHostTensor(Tensor* hostTensor) const;
/**
* @brief create HOST tensor from DEVICE tensor, with or without data copying.
* @param deviceTensor given device tensor.
* @param copyData copy data or not.
* @return created host tensor.
*/
static Tensor* createHostTensorFromDevice(const Tensor* deviceTensor, bool copyData = true);
public:
const halide_buffer_t& buffer() const {
return mBuffer;
}
halide_buffer_t& buffer() {
return mBuffer;
}
/**
* @brief get dimension type.
* @return dimension type.
*/
DimensionType getDimensionType() const;
/**
* @brief handle data type. used when data type code is halide_type_handle.
* @return handle data type.
*/
HandleDataType getHandleDataType() const;
/**
* @brief set data type.
* @param type data type defined in 'Type_generated.h'.
*/
void setType(int type);
/**
* @brief get data type.
* @return data type.
*/
inline halide_type_t getType() const {
return mBuffer.type;
}
/**
* @brief visit host memory, data type is represented by `T`.
* @return data point in `T` type.
*/
template <typename T>
T* host() const {
return (T*)mBuffer.host;
}
/**
* @brief visit device memory.
* @return device data ID. what the ID means varies between backends.
*/
uint64_t deviceId() const {
return mBuffer.device;
}
public:
int dimensions() const {
return mBuffer.dimensions;
}
/**
* @brief get all dimensions' extent.
* @return dimensions' extent.
*/
std::vector<int> shape() const;
/**
* @brief calculate number of bytes needed to store data taking reordering flag into account.
* @return bytes needed to store data
*/
int size() const;
/**
* @brief calculate number of elements needed to store data taking reordering flag into account.
* @return elements needed to store data
*/
inline int elementSize() const {
return size() / mBuffer.type.bytes();
}
public:
inline int width() const {
if (getDimensionType() == TENSORFLOW) {
return mBuffer.dim[2].extent;
}
return mBuffer.dim[3].extent;
}
inline int height() const {
if (getDimensionType() == TENSORFLOW) {
return mBuffer.dim[1].extent;
}
return mBuffer.dim[2].extent;
}
inline int channel() const {
if (getDimensionType() == TENSORFLOW) {
return mBuffer.dim[3].extent;
}
return mBuffer.dim[1].extent;
}
inline int batch() const {
return mBuffer.dim[0].extent;
}
// visit dimension's extent & stride
inline int stride(int index) const {
return mBuffer.dim[index].stride;
}
inline int length(int index) const {
return mBuffer.dim[index].extent;
}
inline void setStride(int index, int stride) {
mBuffer.dim[index].stride = stride;
}
inline void setLength(int index, int length) {
mBuffer.dim[index].extent = length;
}
public:
/**
* @brief print tensor data. for DEBUG use only.
*/
void print() const;
/**
*@brief print tensor shape
*/
void printShape() const;
public:
/**
* @brief map/umap GPU Tensor, to get host ptr
*/
void* map(MapType mtype, DimensionType dtype);
void unmap(MapType mtype, DimensionType dtype, void* mapPtr);
private:
halide_buffer_t mBuffer;
struct InsideDescribe* mDescribe;
private:
friend class TensorUtils;
};
} // namespace MNN
#endif /* Tensor_hpp */