Matrix.h 54.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Generated by tools/bookmaker from include/core/Matrix.h and docs/SkMatrix_Reference.bmh
   on 2018-07-13 08:15:11. Additional documentation and examples can be found at:
   https://skia.org/user/api/SkMatrix_Reference

   You may edit either file directly. Structural changes to public interfaces require
   editing both files. After editing docs/SkMatrix_Reference.bmh, run:
       bookmaker -b docs -i include/core/Matrix.h -p
   to create an updated version of this file.
 */


//
//  Modified by jiangxiaotang on 2018/09/19.
//  Copyright © 2018, Alibaba Group Holding Limited
//

#ifndef SkMatrix_DEFINED
#define SkMatrix_DEFINED

#include <string.h>
#include <cstdint>
#include <MNN/Rect.h>

namespace MNN {
namespace CV {

/** \class Matrix
    Matrix holds a 3x3 matrix for transforming coordinates. This allows mapping
    Point and vectors with translation, scaling, skewing, rotation, and
    perspective.

    Matrix elements are in row major order. Matrix does not have a constructor,
    so it must be explicitly initialized. setIdentity() initializes Matrix
    so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll()
    initializes all Matrix elements with the corresponding mapping.

    Matrix includes a hidden variable that classifies the type of matrix to
    improve performance. Matrix is not thread safe unless getType() is called first.
*/

class MNN_PUBLIC Matrix {
public:
    Matrix() {
        setIdentity();
    }

    /** Sets Matrix to scale by (sx, sy). Returned matrix is:

            | sx  0  0 |
            |  0 sy  0 |
            |  0  0  1 |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @return    Matrix with scale
    */
    static Matrix MakeScale(float sx, float sy) {
        Matrix m;
        m.setScale(sx, sy);
        return m;
    }

    /** Sets Matrix to scale by (scale, scale). Returned matrix is:

            | scale   0   0 |
            |   0   scale 0 |
            |   0     0   1 |

        @param scale  horizontal and vertical scale factor
        @return       Matrix with scale
    */
    static Matrix MakeScale(float scale) {
        Matrix m;
        m.setScale(scale, scale);
        return m;
    }

    /** Sets Matrix to translate by (dx, dy). Returned matrix is:

            | 1 0 dx |
            | 0 1 dy |
            | 0 0  1 |

        @param dx  horizontal translation
        @param dy  vertical translation
        @return    Matrix with translation
    */
    static Matrix MakeTrans(float dx, float dy) {
        Matrix m;
        m.setTranslate(dx, dy);
        return m;
    }

    /** Sets Matrix to:

            | scaleX  skewX transX |
            |  skewY scaleY transY |
            |  pers0  pers1  pers2 |

        @param scaleX  horizontal scale factor
        @param skewX   horizontal skew factor
        @param transX  horizontal translation
        @param skewY   vertical skew factor
        @param scaleY  vertical scale factor
        @param transY  vertical translation
        @param pers0   input x-axis perspective factor
        @param pers1   input y-axis perspective factor
        @param pers2   perspective scale factor
        @return        Matrix constructed from parameters
    */
    static Matrix MakeAll(float scaleX, float skewX, float transX, float skewY, float scaleY, float transY, float pers0,
                          float pers1, float pers2) {
        Matrix m;
        m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2);
        return m;
    }

    /** \enum Matrix::TypeMask
        Enum of bit fields for mask returned by getType().
        Used to identify the complexity of Matrix, to optimize performance.
    */
    enum TypeMask {
        kIdentity_Mask    = 0,    //!< identity Matrix; all bits clear
        kTranslate_Mask   = 0x01, //!< translation Matrix
        kScale_Mask       = 0x02, //!< scale Matrix
        kAffine_Mask      = 0x04, //!< skew or rotate Matrix
        kPerspective_Mask = 0x08, //!< perspective Matrix
    };

    /** Returns a bit field describing the transformations the matrix may
        perform. The bit field is computed conservatively, so it may include
        false positives. For example, when kPerspective_Mask is set, all
        other bits are set.

        @return  kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask,
                 kAffine_Mask, kPerspective_Mask
    */
    TypeMask getType() const {
        if (fTypeMask & kUnknown_Mask) {
            fTypeMask = this->computeTypeMask();
        }
        // only return the public masks
        return (TypeMask)(fTypeMask & 0xF);
    }

    /** Returns true if Matrix is identity.  Identity matrix is:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        @return  true if Matrix has no effect
    */
    bool isIdentity() const {
        return this->getType() == 0;
    }

    /** Returns true if Matrix at most scales and translates. Matrix may be identity,
        contain only scale elements, only translate elements, or both. Matrix form is:

            | scale-x    0    translate-x |
            |    0    scale-y translate-y |
            |    0       0         1      |

        @return  true if Matrix is identity; or scales, translates, or both
    */
    bool isScaleTranslate() const {
        return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
    }

    /** Returns true if Matrix is identity, or translates. Matrix form is:

            | 1 0 translate-x |
            | 0 1 translate-y |
            | 0 0      1      |

        @return  true if Matrix is identity, or translates
    */
    bool isTranslate() const {
        return !(this->getType() & ~(kTranslate_Mask));
    }

    /** Returns true Matrix maps Rect to another Rect. If true, Matrix is identity,
        or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
        cases, Matrix may also have translation. Matrix form is either:

            | scale-x    0    translate-x |
            |    0    scale-y translate-y |
            |    0       0         1      |

        or

            |    0     rotate-x translate-x |
            | rotate-y    0     translate-y |
            |    0        0          1      |

        for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.

        Also called preservesAxisAlignment(); use the one that provides better inline
        documentation.

        @return  true if Matrix maps one Rect into another
    */
    bool rectStaysRect() const {
        if (fTypeMask & kUnknown_Mask) {
            fTypeMask = this->computeTypeMask();
        }
        return (fTypeMask & kRectStaysRect_Mask) != 0;
    }

    /** Returns true Matrix maps Rect to another Rect. If true, Matrix is identity,
        or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
        cases, Matrix may also have translation. Matrix form is either:

            | scale-x    0    translate-x |
            |    0    scale-y translate-y |
            |    0       0         1      |

        or

            |    0     rotate-x translate-x |
            | rotate-y    0     translate-y |
            |    0        0          1      |

        for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.

        Also called rectStaysRect(); use the one that provides better inline
        documentation.

        @return  true if Matrix maps one Rect into another
    */
    bool preservesAxisAlignment() const {
        return this->rectStaysRect();
    }

    /** Matrix organizes its values in row order. These members correspond to
        each value in Matrix.
    */
    static constexpr int kMScaleX = 0; //!< horizontal scale factor
    static constexpr int kMSkewX  = 1; //!< horizontal skew factor
    static constexpr int kMTransX = 2; //!< horizontal translation
    static constexpr int kMSkewY  = 3; //!< vertical skew factor
    static constexpr int kMScaleY = 4; //!< vertical scale factor
    static constexpr int kMTransY = 5; //!< vertical translation
    static constexpr int kMPersp0 = 6; //!< input x perspective factor
    static constexpr int kMPersp1 = 7; //!< input y perspective factor
    static constexpr int kMPersp2 = 8; //!< perspective bias

    /** Affine arrays are in column major order to match the matrix used by
        PDF and XPS.
    */
    static constexpr int kAScaleX = 0; //!< horizontal scale factor
    static constexpr int kASkewY  = 1; //!< vertical skew factor
    static constexpr int kASkewX  = 2; //!< horizontal skew factor
    static constexpr int kAScaleY = 3; //!< vertical scale factor
    static constexpr int kATransX = 4; //!< horizontal translation
    static constexpr int kATransY = 5; //!< vertical translation

    /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
        defined.

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @return       value corresponding to index
    */
    float operator[](int index) const {
        MNN_ASSERT((unsigned)index < 9);
        return fMat[index];
    }

    /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
        defined.

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @return       value corresponding to index
    */
    float get(int index) const {
        MNN_ASSERT((unsigned)index < 9);
        return fMat[index];
    }

    /** Returns scale factor multiplied by x-axis input, contributing to x-axis output.
        With mapPoints(), scales Point along the x-axis.

        @return  horizontal scale factor
    */
    float getScaleX() const {
        return fMat[kMScaleX];
    }

    /** Returns scale factor multiplied by y-axis input, contributing to y-axis output.
        With mapPoints(), scales Point along the y-axis.

        @return  vertical scale factor
    */
    float getScaleY() const {
        return fMat[kMScaleY];
    }

    /** Returns scale factor multiplied by x-axis input, contributing to y-axis output.
        With mapPoints(), skews Point along the y-axis.
        Skewing both axes can rotate Point.

        @return  vertical skew factor
    */
    float getSkewY() const {
        return fMat[kMSkewY];
    }

    /** Returns scale factor multiplied by y-axis input, contributing to x-axis output.
        With mapPoints(), skews Point along the x-axis.
        Skewing both axes can rotate Point.

        @return  horizontal scale factor
    */
    float getSkewX() const {
        return fMat[kMSkewX];
    }

    /** Returns translation contributing to x-axis output.
        With mapPoints(), moves Point along the x-axis.

        @return  horizontal translation factor
    */
    float getTranslateX() const {
        return fMat[kMTransX];
    }

    /** Returns translation contributing to y-axis output.
        With mapPoints(), moves Point along the y-axis.

        @return  vertical translation factor
    */
    float getTranslateY() const {
        return fMat[kMTransY];
    }

    /** Returns factor scaling input x-axis relative to input y-axis.

        @return  input x-axis perspective factor
    */
    float getPerspX() const {
        return fMat[kMPersp0];
    }

    /** Returns factor scaling input y-axis relative to input x-axis.

        @return  input y-axis perspective factor
    */
    float getPerspY() const {
        return fMat[kMPersp1];
    }

    /** Returns writable Matrix value. Asserts if index is out of range and SK_DEBUG is
        defined. Clears internal cache anticipating that caller will change Matrix value.

        Next call to read Matrix state may recompute cache; subsequent writes to Matrix
        value must be followed by dirtyMatrixTypeCache().

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @return       writable value corresponding to index
    */
    float& operator[](int index) {
        MNN_ASSERT((unsigned)index < 9);
        this->setTypeMask(kUnknown_Mask);
        return fMat[index];
    }

    /** Sets Matrix value. Asserts if index is out of range and SK_DEBUG is
        defined. Safer than operator[]; internal cache is always maintained.

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @param value  scalar to store in Matrix
    */
    void set(int index, float value) {
        MNN_ASSERT((unsigned)index < 9);
        fMat[index] = value;
        this->setTypeMask(kUnknown_Mask);
    }

    /** Sets horizontal scale factor.

        @param v  horizontal scale factor to store
    */
    void setScaleX(float v) {
        this->set(kMScaleX, v);
    }

    /** Sets vertical scale factor.

        @param v  vertical scale factor to store
    */
    void setScaleY(float v) {
        this->set(kMScaleY, v);
    }

    /** Sets vertical skew factor.

        @param v  vertical skew factor to store
    */
    void setSkewY(float v) {
        this->set(kMSkewY, v);
    }

    /** Sets horizontal skew factor.

        @param v  horizontal skew factor to store
    */
    void setSkewX(float v) {
        this->set(kMSkewX, v);
    }

    /** Sets horizontal translation.

        @param v  horizontal translation to store
    */
    void setTranslateX(float v) {
        this->set(kMTransX, v);
    }

    /** Sets vertical translation.

        @param v  vertical translation to store
    */
    void setTranslateY(float v) {
        this->set(kMTransY, v);
    }

    /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values
        inversely proportional to input y-axis values.

        @param v  perspective factor
    */
    void setPerspX(float v) {
        this->set(kMPersp0, v);
    }

    /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values
        inversely proportional to input x-axis values.

        @param v  perspective factor
    */
    void setPerspY(float v) {
        this->set(kMPersp1, v);
    }

    /** Sets all values from parameters. Sets matrix to:

            | scaleX  skewX transX |
            |  skewY scaleY transY |
            | persp0 persp1 persp2 |

        @param scaleX  horizontal scale factor to store
        @param skewX   horizontal skew factor to store
        @param transX  horizontal translation to store
        @param skewY   vertical skew factor to store
        @param scaleY  vertical scale factor to store
        @param transY  vertical translation to store
        @param persp0  input x-axis values perspective factor to store
        @param persp1  input y-axis values perspective factor to store
        @param persp2  perspective scale factor to store
    */
    void setAll(float scaleX, float skewX, float transX, float skewY, float scaleY, float transY, float persp0,
                float persp1, float persp2) {
        fMat[kMScaleX] = scaleX;
        fMat[kMSkewX]  = skewX;
        fMat[kMTransX] = transX;
        fMat[kMSkewY]  = skewY;
        fMat[kMScaleY] = scaleY;
        fMat[kMTransY] = transY;
        fMat[kMPersp0] = persp0;
        fMat[kMPersp1] = persp1;
        fMat[kMPersp2] = persp2;
        this->setTypeMask(kUnknown_Mask);
    }

    /** Copies nine scalar values contained by Matrix into buffer, in member value
        ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
        kMPersp0, kMPersp1, kMPersp2.

        @param buffer  storage for nine scalar values
    */
    void get9(float buffer[9]) const {
        memcpy(buffer, fMat, 9 * sizeof(float));
    }

    /** Sets Matrix to nine scalar values in buffer, in member value ascending order:
        kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1,
        kMPersp2.

        Sets matrix to:

            | buffer[0] buffer[1] buffer[2] |
            | buffer[3] buffer[4] buffer[5] |
            | buffer[6] buffer[7] buffer[8] |

        In the future, set9 followed by get9 may not return the same values. Since Matrix
        maps non-homogeneous coordinates, scaling all nine values produces an equivalent
        transformation, possibly improving precision.

        @param buffer  nine scalar values
    */
    void set9(const float buffer[9]);

    /** Sets Matrix to identity; which has no effect on mapped Point. Sets Matrix to:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        Also called setIdentity(); use the one that provides better inline
        documentation.
    */
    void reset();

    /** Sets Matrix to identity; which has no effect on mapped Point. Sets Matrix to:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        Also called reset(); use the one that provides better inline
        documentation.
    */
    void setIdentity() {
        this->reset();
    }

    /** Sets Matrix to translate by (dx, dy).

        @param dx  horizontal translation
        @param dy  vertical translation
    */
    void setTranslate(float dx, float dy);

    /** Sets Matrix to scale by sx and sy, about a pivot point at (px, py).
        The pivot point is unchanged when mapped with Matrix.

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @param px  pivot x
        @param py  pivot y
    */
    void setScale(float sx, float sy, float px, float py);

    /** Sets Matrix to scale by sx and sy about at pivot point at (0, 0).

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
    */
    void setScale(float sx, float sy);

    /** Sets Matrix to rotate by degrees about a pivot point at (px, py).
        The pivot point is unchanged when mapped with Matrix.

        Positive degrees rotates clockwise.

        @param degrees  angle of axes relative to upright axes
        @param px       pivot x
        @param py       pivot y
    */
    void setRotate(float degrees, float px, float py);

    /** Sets Matrix to rotate by degrees about a pivot point at (0, 0).
        Positive degrees rotates clockwise.

        @param degrees  angle of axes relative to upright axes
    */
    void setRotate(float degrees);

    /** Sets Matrix to rotate by sinValue and cosValue, about a pivot point at (px, py).
        The pivot point is unchanged when mapped with Matrix.

        Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
        Vector length specifies scale.

        @param sinValue  rotation vector x-axis component
        @param cosValue  rotation vector y-axis component
        @param px        pivot x-axis
        @param py        pivot y-axis
    */
    void setSinCos(float sinValue, float cosValue, float px, float py);

    /** Sets Matrix to rotate by sinValue and cosValue, about a pivot point at (0, 0).

        Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
        Vector length specifies scale.

        @param sinValue  rotation vector x-axis component
        @param cosValue  rotation vector y-axis component
    */
    void setSinCos(float sinValue, float cosValue);

    /** Sets Matrix to skew by kx and ky, about a pivot point at (px, py).
        The pivot point is unchanged when mapped with Matrix.

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
        @param px  pivot x
        @param py  pivot y
    */
    void setSkew(float kx, float ky, float px, float py);

    /** Sets Matrix to skew by kx and ky, about a pivot point at (0, 0).

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
    */
    void setSkew(float kx, float ky);

    /** Sets Matrix to Matrix a multiplied by Matrix b. Either a or b may be this.

        Given:

                | A B C |      | J K L |
            a = | D E F |, b = | M N O |
                | G H I |      | P Q R |

        sets Matrix to:

                    | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                    | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param a  Matrix on left side of multiply expression
        @param b  Matrix on right side of multiply expression
    */
    void setConcat(const Matrix& a, const Matrix& b);

    /** Sets Matrix to Matrix multiplied by Matrix constructed from translation (dx, dy).
        This can be thought of as moving the point to be mapped before applying Matrix.

        Given:

                     | A B C |               | 1 0 dx |
            Matrix = | D E F |,  T(dx, dy) = | 0 1 dy |
                     | G H I |               | 0 0  1 |

        sets Matrix to:

                                 | A B C | | 1 0 dx |   | A B A*dx+B*dy+C |
            Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F |
                                 | G H I | | 0 0  1 |   | G H G*dx+H*dy+I |

        @param dx  x-axis translation before applying Matrix
        @param dy  y-axis translation before applying Matrix
    */
    void preTranslate(float dx, float dy);

    /** Sets Matrix to Matrix multiplied by Matrix constructed from scaling by (sx, sy)
        about pivot point (px, py).
        This can be thought of as scaling about a pivot point before applying Matrix.

        Given:

                     | A B C |                       | sx  0 dx |
            Matrix = | D E F |,  S(sx, sy, px, py) = |  0 sy dy |
                     | G H I |                       |  0  0  1 |

        where

            dx = px - sx * px
            dy = py - sy * py

        sets Matrix to:

                                         | A B C | | sx  0 dx |   | A*sx B*sy A*dx+B*dy+C |
            Matrix * S(sx, sy, px, py) = | D E F | |  0 sy dy | = | D*sx E*sy D*dx+E*dy+F |
                                         | G H I | |  0  0  1 |   | G*sx H*sy G*dx+H*dy+I |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @param px  pivot x
        @param py  pivot y
    */
    void preScale(float sx, float sy, float px, float py);

    /** Sets Matrix to Matrix multiplied by Matrix constructed from scaling by (sx, sy)
        about pivot point (0, 0).
        This can be thought of as scaling about the origin before applying Matrix.

        Given:

                     | A B C |               | sx  0  0 |
            Matrix = | D E F |,  S(sx, sy) = |  0 sy  0 |
                     | G H I |               |  0  0  1 |

        sets Matrix to:

                                 | A B C | | sx  0  0 |   | A*sx B*sy C |
            Matrix * S(sx, sy) = | D E F | |  0 sy  0 | = | D*sx E*sy F |
                                 | G H I | |  0  0  1 |   | G*sx H*sy I |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
    */
    void preScale(float sx, float sy);

    /** Sets Matrix to Matrix multiplied by Matrix constructed from rotating by degrees
        about pivot point (px, py).
        This can be thought of as rotating about a pivot point before applying Matrix.

        Positive degrees rotates clockwise.

        Given:

                     | A B C |                        | c -s dx |
            Matrix = | D E F |,  R(degrees, px, py) = | s  c dy |
                     | G H I |                        | 0  0  1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)
            dx =  s * py + (1 - c) * px
            dy = -s * px + (1 - c) * py

        sets Matrix to:

                                          | A B C | | c -s dx |   | Ac+Bs -As+Bc A*dx+B*dy+C |
            Matrix * R(degrees, px, py) = | D E F | | s  c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F |
                                          | G H I | | 0  0  1 |   | Gc+Hs -Gs+Hc G*dx+H*dy+I |

        @param degrees  angle of axes relative to upright axes
        @param px       pivot x
        @param py       pivot y
    */
    void preRotate(float degrees, float px, float py);

    /** Sets Matrix to Matrix multiplied by Matrix constructed from rotating by degrees
        about pivot point (0, 0).
        This can be thought of as rotating about the origin before applying Matrix.

        Positive degrees rotates clockwise.

        Given:

                     | A B C |                        | c -s 0 |
            Matrix = | D E F |,  R(degrees, px, py) = | s  c 0 |
                     | G H I |                        | 0  0 1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)

        sets Matrix to:

                                          | A B C | | c -s 0 |   | Ac+Bs -As+Bc C |
            Matrix * R(degrees, px, py) = | D E F | | s  c 0 | = | Dc+Es -Ds+Ec F |
                                          | G H I | | 0  0 1 |   | Gc+Hs -Gs+Hc I |

        @param degrees  angle of axes relative to upright axes
    */
    void preRotate(float degrees);

    /** Sets Matrix to Matrix multiplied by Matrix constructed from skewing by (kx, ky)
        about pivot point (px, py).
        This can be thought of as skewing about a pivot point before applying Matrix.

        Given:

                     | A B C |                       |  1 kx dx |
            Matrix = | D E F |,  K(kx, ky, px, py) = | ky  1 dy |
                     | G H I |                       |  0  0  1 |

        where

            dx = -kx * py
            dy = -ky * px

        sets Matrix to:

                                         | A B C | |  1 kx dx |   | A+B*ky A*kx+B A*dx+B*dy+C |
            Matrix * K(kx, ky, px, py) = | D E F | | ky  1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F |
                                         | G H I | |  0  0  1 |   | G+H*ky G*kx+H G*dx+H*dy+I |

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
        @param px  pivot x
        @param py  pivot y
    */
    void preSkew(float kx, float ky, float px, float py);

    /** Sets Matrix to Matrix multiplied by Matrix constructed from skewing by (kx, ky)
        about pivot point (0, 0).
        This can be thought of as skewing about the origin before applying Matrix.

        Given:

                     | A B C |               |  1 kx 0 |
            Matrix = | D E F |,  K(kx, ky) = | ky  1 0 |
                     | G H I |               |  0  0 1 |

        sets Matrix to:

                                 | A B C | |  1 kx 0 |   | A+B*ky A*kx+B C |
            Matrix * K(kx, ky) = | D E F | | ky  1 0 | = | D+E*ky D*kx+E F |
                                 | G H I | |  0  0 1 |   | G+H*ky G*kx+H I |

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
    */
    void preSkew(float kx, float ky);

    /** Sets Matrix to Matrix multiplied by Matrix other.
        This can be thought of mapping by other before applying Matrix.

        Given:

                     | A B C |          | J K L |
            Matrix = | D E F |, other = | M N O |
                     | G H I |          | P Q R |

        sets Matrix to:

                             | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                             | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param other  Matrix on right side of multiply expression
    */
    void preConcat(const Matrix& other);

    /** Sets Matrix to Matrix constructed from translation (dx, dy) multiplied by Matrix.
        This can be thought of as moving the point to be mapped after applying Matrix.

        Given:

                     | J K L |               | 1 0 dx |
            Matrix = | M N O |,  T(dx, dy) = | 0 1 dy |
                     | P Q R |               | 0 0  1 |

        sets Matrix to:

                                 | 1 0 dx | | J K L |   | J+dx*P K+dx*Q L+dx*R |
            T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R |
                                 | 0 0  1 | | P Q R |   |      P      Q      R |

        @param dx  x-axis translation after applying Matrix
        @param dy  y-axis translation after applying Matrix
    */
    void postTranslate(float dx, float dy);

    /** Sets Matrix to Matrix constructed from scaling by (sx, sy) about pivot point
        (px, py), multiplied by Matrix.
        This can be thought of as scaling about a pivot point after applying Matrix.

        Given:

                     | J K L |                       | sx  0 dx |
            Matrix = | M N O |,  S(sx, sy, px, py) = |  0 sy dy |
                     | P Q R |                       |  0  0  1 |

        where

            dx = px - sx * px
            dy = py - sy * py

        sets Matrix to:

                                         | sx  0 dx | | J K L |   | sx*J+dx*P sx*K+dx*Q sx*L+dx+R |
            S(sx, sy, px, py) * Matrix = |  0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R |
                                         |  0  0  1 | | P Q R |   |         P         Q         R |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @param px  pivot x
        @param py  pivot y
    */
    void postScale(float sx, float sy, float px, float py);

    /** Sets Matrix to Matrix constructed from scaling by (sx, sy) about pivot point
        (0, 0), multiplied by Matrix.
        This can be thought of as scaling about the origin after applying Matrix.

        Given:

                     | J K L |               | sx  0  0 |
            Matrix = | M N O |,  S(sx, sy) = |  0 sy  0 |
                     | P Q R |               |  0  0  1 |

        sets Matrix to:

                                 | sx  0  0 | | J K L |   | sx*J sx*K sx*L |
            S(sx, sy) * Matrix = |  0 sy  0 | | M N O | = | sy*M sy*N sy*O |
                                 |  0  0  1 | | P Q R |   |    P    Q    R |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
    */
    void postScale(float sx, float sy);

    /** Sets Matrix to Matrix constructed from scaling by (1/divx, 1/divy) about pivot point (px, py), multiplied by
       Matrix.

        Returns false if either divx or divy is zero.

        Given:

                     | J K L |                   | sx  0  0 |
            Matrix = | M N O |,  I(divx, divy) = |  0 sy  0 |
                     | P Q R |                   |  0  0  1 |

        where

            sx = 1 / divx
            sy = 1 / divy

        sets Matrix to:

                                     | sx  0  0 | | J K L |   | sx*J sx*K sx*L |
            I(divx, divy) * Matrix = |  0 sy  0 | | M N O | = | sy*M sy*N sy*O |
                                     |  0  0  1 | | P Q R |   |    P    Q    R |

        @param divx  integer divisor for inverse scale in x
        @param divy  integer divisor for inverse scale in y
        @return      true on successful scale
    */
    bool postIDiv(int divx, int divy);

    /** Sets Matrix to Matrix constructed from rotating by degrees about pivot point
        (px, py), multiplied by Matrix.
        This can be thought of as rotating about a pivot point after applying Matrix.

        Positive degrees rotates clockwise.

        Given:

                     | J K L |                        | c -s dx |
            Matrix = | M N O |,  R(degrees, px, py) = | s  c dy |
                     | P Q R |                        | 0  0  1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)
            dx =  s * py + (1 - c) * px
            dy = -s * px + (1 - c) * py

        sets Matrix to:

                                          |c -s dx| |J K L|   |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R|
            R(degrees, px, py) * Matrix = |s  c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R|
                                          |0  0  1| |P Q R|   |         P          Q          R|

        @param degrees  angle of axes relative to upright axes
        @param px       pivot x
        @param py       pivot y
    */
    void postRotate(float degrees, float px, float py);

    /** Sets Matrix to Matrix constructed from rotating by degrees about pivot point
        (0, 0), multiplied by Matrix.
        This can be thought of as rotating about the origin after applying Matrix.

        Positive degrees rotates clockwise.

        Given:

                     | J K L |                        | c -s 0 |
            Matrix = | M N O |,  R(degrees, px, py) = | s  c 0 |
                     | P Q R |                        | 0  0 1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)

        sets Matrix to:

                                          | c -s dx | | J K L |   | cJ-sM cK-sN cL-sO |
            R(degrees, px, py) * Matrix = | s  c dy | | M N O | = | sJ+cM sK+cN sL+cO |
                                          | 0  0  1 | | P Q R |   |     P     Q     R |

        @param degrees  angle of axes relative to upright axes
    */
    void postRotate(float degrees);

    /** Sets Matrix to Matrix constructed from skewing by (kx, ky) about pivot point
        (px, py), multiplied by Matrix.
        This can be thought of as skewing about a pivot point after applying Matrix.

        Given:

                     | J K L |                       |  1 kx dx |
            Matrix = | M N O |,  K(kx, ky, px, py) = | ky  1 dy |
                     | P Q R |                       |  0  0  1 |

        where

            dx = -kx * py
            dy = -ky * px

        sets Matrix to:

                                         | 1 kx dx| |J K L|   |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R|
            K(kx, ky, px, py) * Matrix = |ky  1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R|
                                         | 0  0  1| |P Q R|   |          P           Q           R|

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
        @param px  pivot x
        @param py  pivot y
    */
    void postSkew(float kx, float ky, float px, float py);

    /** Sets Matrix to Matrix constructed from skewing by (kx, ky) about pivot point
        (0, 0), multiplied by Matrix.
        This can be thought of as skewing about the origin after applying Matrix.

        Given:

                     | J K L |               |  1 kx 0 |
            Matrix = | M N O |,  K(kx, ky) = | ky  1 0 |
                     | P Q R |               |  0  0 1 |

        sets Matrix to:

                                 |  1 kx 0 | | J K L |   | J+kx*M K+kx*N L+kx*O |
            K(kx, ky) * Matrix = | ky  1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O |
                                 |  0  0 1 | | P Q R |   |      P      Q      R |

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
    */
    void postSkew(float kx, float ky);

    /** Sets Matrix to Matrix other multiplied by Matrix.
        This can be thought of mapping by other after applying Matrix.

        Given:

                     | J K L |           | A B C |
            Matrix = | M N O |,  other = | D E F |
                     | P Q R |           | G H I |

        sets Matrix to:

                             | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                             | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param other  Matrix on left side of multiply expression
    */
    void postConcat(const Matrix& other);

    /** \enum Matrix::ScaleToFit
        ScaleToFit describes how Matrix is constructed to map one Rect to another.
        ScaleToFit may allow Matrix to have unequal horizontal and vertical scaling,
        or may restrict Matrix to square scaling. If restricted, ScaleToFit specifies
        how Matrix maps to the side or center of the destination Rect.
    */
    enum ScaleToFit {
        kFill_ScaleToFit,   //!< scales in x and y to fill destination Rect
        kStart_ScaleToFit,  //!< scales and aligns to left and top
        kCenter_ScaleToFit, //!< scales and aligns to center
        kEnd_ScaleToFit,    //!< scales and aligns to right and bottom
    };

    /** Sets Matrix to scale and translate src Rect to dst Rect. stf selects whether
        mapping completely fills dst or preserves the aspect ratio, and how to align
        src within dst. Returns false if src is empty, and sets Matrix to identity.
        Returns true if dst is empty, and sets Matrix to:

            | 0 0 0 |
            | 0 0 0 |
            | 0 0 1 |

        @param src  Rect to map from
        @param dst  Rect to map to
        @param stf  one of: kFill_ScaleToFit, kStart_ScaleToFit,
                    kCenter_ScaleToFit, kEnd_ScaleToFit
        @return     true if Matrix can represent Rect mapping
    */
    bool setRectToRect(const Rect& src, const Rect& dst, ScaleToFit stf);

    /** Returns Matrix set to scale and translate src Rect to dst Rect. stf selects
        whether mapping completely fills dst or preserves the aspect ratio, and how to
        align src within dst. Returns the identity Matrix if src is empty. If dst is
        empty, returns Matrix set to:

            | 0 0 0 |
            | 0 0 0 |
            | 0 0 1 |

        @param src  Rect to map from
        @param dst  Rect to map to
        @param stf  one of: kFill_ScaleToFit, kStart_ScaleToFit,
                    kCenter_ScaleToFit, kEnd_ScaleToFit
        @return     Matrix mapping src to dst
    */
    static Matrix MakeRectToRect(const Rect& src, const Rect& dst, ScaleToFit stf) {
        Matrix m;
        m.setRectToRect(src, dst, stf);
        return m;
    }

    /** Sets Matrix to map src to dst. count must be zero or greater, and four or less.

        If count is zero, sets Matrix to identity and returns true.
        If count is one, sets Matrix to translate and returns true.
        If count is two or more, sets Matrix to map Point if possible; returns false
        if Matrix cannot be constructed. If count is four, Matrix may include
        perspective.

        @param src    Point to map from
        @param dst    Point to map to
        @param count  number of Point in src and dst
        @return       true if Matrix was constructed successfully
    */
    bool setPolyToPoly(const Point src[], const Point dst[], int count);

    /** Sets inverse to reciprocal matrix, returning true if Matrix can be inverted.
        Geometrically, if Matrix maps from source to destination, inverse Matrix
        maps from destination to source. If Matrix can not be inverted, inverse is
        unchanged.

        @param inverse  storage for inverted Matrix; may be nullptr
        @return         true if Matrix can be inverted
    */
    bool invert(Matrix* inverse) const {
        // Allow the trivial case to be inlined.
        if (this->isIdentity()) {
            if (inverse) {
                inverse->reset();
            }
            return true;
        }
        return this->invertNonIdentity(inverse);
    }

    /** Fills affine with identity values in column major order.
        Sets affine to:

            | 1 0 0 |
            | 0 1 0 |

        Affine 3x2 matrices in column major order are used by OpenGL and XPS.

        @param affine  storage for 3x2 affine matrix
    */
    static void SetAffineIdentity(float affine[6]);

    /** Fills affine in column major order. Sets affine to:

            | scale-x  skew-x translate-x |
            | skew-y  scale-y translate-y |

        If Matrix contains perspective, returns false and leaves affine unchanged.

        @param affine  storage for 3x2 affine matrix; may be nullptr
        @return        true if Matrix does not contain perspective
    */
    bool asAffine(float affine[6]) const;

    /** Sets Matrix to affine values, passed in column major order. Given affine,
        column, then row, as:

            | scale-x  skew-x translate-x |
            |  skew-y scale-y translate-y |

        Matrix is set, row, then column, to:

            | scale-x  skew-x translate-x |
            |  skew-y scale-y translate-y |
            |       0       0           1 |

        @param affine  3x2 affine matrix
    */
    void setAffine(const float affine[6]);

    /** Maps src Point array of length count to dst Point array of equal or greater
        length. Point are mapped by multiplying each Point by Matrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        where

            for (i = 0; i < count; ++i) {
                x = src[i].fX
                y = src[i].fY
            }

        each dst Point is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        src and dst may point to the same storage.

        @param dst    storage for mapped Point
        @param src    Point to transform
        @param count  number of Point to transform
    */
    void mapPoints(Point dst[], const Point src[], int count) const {
        MNN_ASSERT((dst && src && count > 0) || 0 == count);
        // no partial overlap
        MNN_ASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
        this->getMapPtsProc()(*this, dst, src, count);
    }

    /** Maps pts Point array of length count in place. Point are mapped by multiplying
        each Point by Matrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        where

            for (i = 0; i < count; ++i) {
                x = pts[i].fX
                y = pts[i].fY
            }

        each resulting pts Point is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        @param pts    storage for mapped Point
        @param count  number of Point to transform
    */
    void mapPoints(Point pts[], int count) const {
        this->mapPoints(pts, pts, count);
    }

    /** Maps Point (x, y) to result. Point is mapped by multiplying by Matrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        result is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        @param x       x-axis value of Point to map
        @param y       y-axis value of Point to map
        @param result  storage for mapped Point
    */
    void mapXY(float x, float y, Point* result) const {
        this->getMapXYProc()(*this, x, y, result);
    }

    /** Returns Point (x, y) multiplied by Matrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        result is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        @param x  x-axis value of Point to map
        @param y  y-axis value of Point to map
        @return   mapped Point
    */
    Point mapXY(float x, float y) const {
        Point result;
        this->getMapXYProc()(*this, x, y, &result);
        return result;
    }

    /** Sets dst to bounds of src corners mapped by Matrix.
        Returns true if mapped corners are dst corners.

        Returned value is the same as calling rectStaysRect().

        @param dst  storage for bounds of mapped Point
        @param src  Rect to map
        @return     true if dst is equivalent to mapped src
    */
    bool mapRect(Rect* dst, const Rect& src) const;

    /** Sets rect to bounds of rect corners mapped by Matrix.
        Returns true if mapped corners are computed rect corners.

        Returned value is the same as calling rectStaysRect().

        @param rect  rectangle to map, and storage for bounds of mapped corners
        @return      true if result is equivalent to mapped src
    */
    bool mapRect(Rect* rect) const {
        return this->mapRect(rect, *rect);
    }

    /** Returns bounds of src corners mapped by Matrix.

        @param src  rectangle to map
        @return     mapped bounds
    */
    Rect mapRect(const Rect& src) const {
        Rect dst;
        (void)this->mapRect(&dst, src);
        return dst;
    }

    /** Sets dst to bounds of src corners mapped by Matrix. If matrix contains
        elements other than scale or translate: asserts if SK_DEBUG is defined;
        otherwise, results are undefined.

        @param dst  storage for bounds of mapped Point
        @param src  Rect to map
    */
    void mapRectScaleTranslate(Rect* dst, const Rect& src) const;

    /** Returns true if Matrix equals m, using an efficient comparison.

        Returns false when the sign of zero values is the different; when one
        matrix has positive zero value and the other has negative zero value.

        Returns true even when both Matrix contain NaN.

        NaN never equals any value, including itself. To improve performance, NaN values
        are treated as bit patterns that are equal if their bit patterns are equal.

        @param m  Matrix to compare
        @return   true if m and Matrix are represented by identical bit patterns
    */
    bool cheapEqualTo(const Matrix& m) const {
        return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
    }

    /** Compares a and b; returns true if a and b are numerically equal. Returns true
        even if sign of zero values are different. Returns false if either Matrix
        contains NaN, even if the other Matrix also contains NaN.

        @param a  Matrix to compare
        @param b  Matrix to compare
        @return   true if Matrix a and Matrix b are numerically equal
    */
    friend MNN_PUBLIC bool operator==(const Matrix& a, const Matrix& b);

    /** Compares a and b; returns true if a and b are not numerically equal. Returns false
        even if sign of zero values are different. Returns true if either Matrix
        contains NaN, even if the other Matrix also contains NaN.

        @param a  Matrix to compare
        @param b  Matrix to compare
        @return   true if Matrix a and Matrix b are numerically not equal
    */
    friend MNN_PUBLIC bool operator!=(const Matrix& a, const Matrix& b) {
        return !(a == b);
    }

    /** Writes text representation of Matrix to standard output. Floating point values
        are written with limited precision; it may not be possible to reconstruct
        original Matrix from output.
    */
    void dump() const;

    /** Returns the minimum scaling factor of Matrix by decomposing the scaling and
        skewing elements.
        Returns -1 if scale factor overflows or Matrix contains perspective.

        @return  minimum scale factor
    */
    float getMinScale() const;

    /** Returns the maximum scaling factor of Matrix by decomposing the scaling and
        skewing elements.
        Returns -1 if scale factor overflows or Matrix contains perspective.

        @return  maximum scale factor
    */
    float getMaxScale() const;

    /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the
        maximum scaling factor. Scaling factors are computed by decomposing
        the Matrix scaling and skewing elements.

        Returns true if scaleFactors are found; otherwise, returns false and sets
        scaleFactors to undefined values.

        @param scaleFactors  storage for minimum and maximum scale factors
        @return              true if scale factors were computed correctly
    */
    bool getMinMaxScales(float scaleFactors[2]) const;

    /** Returns reference to const identity Matrix. Returned Matrix is set to:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        @return  const identity Matrix
    */
    static const Matrix& I();

    /** Returns reference to a const Matrix with invalid values. Returned Matrix is set
        to:

            | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
            | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
            | SK_ScalarMax SK_ScalarMax SK_ScalarMax |

        @return  const invalid Matrix
    */
    static const Matrix& InvalidMatrix();

    /** Returns Matrix a multiplied by Matrix b.

        Given:

                | A B C |      | J K L |
            a = | D E F |, b = | M N O |
                | G H I |      | P Q R |

        sets Matrix to:

                    | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                    | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param a  Matrix on left side of multiply expression
        @param b  Matrix on right side of multiply expression
        @return   Matrix computed from a times b
    */
    static Matrix Concat(const Matrix& a, const Matrix& b) {
        Matrix result;
        result.setConcat(a, b);
        return result;
    }

    /** Sets internal cache to unknown state. Use to force update after repeated
        modifications to Matrix element reference returned by operator[](int index).
    */
    void dirtyMatrixTypeCache() {
        this->setTypeMask(kUnknown_Mask);
    }

    /** Initializes Matrix with scale and translate elements.

            | sx  0 tx |
            |  0 sy ty |
            |  0  0  1 |

        @param sx  horizontal scale factor to store
        @param sy  vertical scale factor to store
        @param tx  horizontal translation to store
        @param ty  vertical translation to store
    */
    void setScaleTranslate(float sx, float sy, float tx, float ty) {
        fMat[kMScaleX] = sx;
        fMat[kMSkewX]  = 0;
        fMat[kMTransX] = tx;

        fMat[kMSkewY]  = 0;
        fMat[kMScaleY] = sy;
        fMat[kMTransY] = ty;

        fMat[kMPersp0] = 0;
        fMat[kMPersp1] = 0;
        fMat[kMPersp2] = 1;

        unsigned mask = 0;
        if (sx != 1 || sy != 1) {
            mask |= kScale_Mask;
        }
        if (tx || ty) {
            mask |= kTranslate_Mask;
        }
        this->setTypeMask(mask | kRectStaysRect_Mask);
    }

    /** Returns true if all elements of the matrix are finite. Returns false if any
        element is infinity, or NaN.

        @return  true if matrix has only finite elements
    */

private:
    /** Set if the matrix will map a rectangle to another rectangle. This
        can be true if the matrix is scale-only, or rotates a multiple of
        90 degrees.

        This bit will be set on identity matrices
    */
    static constexpr int kRectStaysRect_Mask = 0x10;

    /** Set if the perspective bit is valid even though the rest of
        the matrix is Unknown.
    */
    static constexpr int kOnlyPerspectiveValid_Mask = 0x40;

    static constexpr int kUnknown_Mask = 0x80;

    static constexpr int kORableMasks = kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask;

    static constexpr int kAllMasks =
        kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask | kRectStaysRect_Mask;

    float fMat[9];
    mutable uint32_t fTypeMask;

    static void ComputeInv(float dst[9], const float src[9], double invDet, bool isPersp);

    uint8_t computeTypeMask() const;
    uint8_t computePerspectiveTypeMask() const;

    void setTypeMask(int mask) {
        // allow kUnknown or a valid mask
        MNN_ASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
                   ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) ==
                       (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
        fTypeMask = (uint8_t)(mask);
    }

    void orTypeMask(int mask) {
        MNN_ASSERT((mask & kORableMasks) == mask);
        fTypeMask = (uint8_t)(fTypeMask | mask);
    }

    void clearTypeMask(int mask) {
        // only allow a valid mask
        MNN_ASSERT((mask & kAllMasks) == mask);
        fTypeMask = fTypeMask & ~mask;
    }

    TypeMask getPerspectiveTypeMaskOnly() const {
        if ((fTypeMask & kUnknown_Mask) && !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
            fTypeMask = this->computePerspectiveTypeMask();
        }
        return (TypeMask)(fTypeMask & 0xF);
    }

    /** Returns true if we already know that the matrix is identity;
        false otherwise.
    */
    bool isTriviallyIdentity() const {
        if (fTypeMask & kUnknown_Mask) {
            return false;
        }
        return ((fTypeMask & 0xF) == 0);
    }

    inline void updateTranslateMask() {
        if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) {
            fTypeMask |= kTranslate_Mask;
        } else {
            fTypeMask &= ~kTranslate_Mask;
        }
    }

    typedef void (*MapXYProc)(const Matrix& mat, float x, float y, Point* result);

    static MapXYProc GetMapXYProc(TypeMask mask) {
        MNN_ASSERT((mask & ~kAllMasks) == 0);
        return gMapXYProcs[mask & kAllMasks];
    }

    MapXYProc getMapXYProc() const {
        return GetMapXYProc(this->getType());
    }

    typedef void (*MapPtsProc)(const Matrix& mat, Point dst[], const Point src[], int count);

    static MapPtsProc GetMapPtsProc(TypeMask mask) {
        MNN_ASSERT((mask & ~kAllMasks) == 0);
        return gMapPtsProcs[mask & kAllMasks];
    }

    MapPtsProc getMapPtsProc() const {
        return GetMapPtsProc(this->getType());
    }

    bool invertNonIdentity(Matrix* inverse) const;

    static void Identity_xy(const Matrix&, float, float, Point*);
    static void Trans_xy(const Matrix&, float, float, Point*);
    static void Scale_xy(const Matrix&, float, float, Point*);
    static void ScaleTrans_xy(const Matrix&, float, float, Point*);
    static void Rot_xy(const Matrix&, float, float, Point*);
    static void RotTrans_xy(const Matrix&, float, float, Point*);
    static void Persp_xy(const Matrix&, float, float, Point*);

    static const MapXYProc gMapXYProcs[];

    static void Identity_pts(const Matrix&, Point[], const Point[], int);
    static void Trans_pts(const Matrix&, Point dst[], const Point[], int);
    static void Scale_pts(const Matrix&, Point dst[], const Point[], int);
    static void ScaleTrans_pts(const Matrix&, Point dst[], const Point[], int count);
    static void Persp_pts(const Matrix&, Point dst[], const Point[], int);

    static void Affine_vpts(const Matrix&, Point dst[], const Point[], int);

    static const MapPtsProc gMapPtsProcs[];
    static bool Poly2Proc(const Point srcPt[], Matrix* dst);
    static bool Poly3Proc(const Point srcPt[], Matrix* dst);
    static bool Poly4Proc(const Point srcPt[], Matrix* dst);
};
} // namespace CV
} // namespace MNN
#endif