onnx.hpp
6.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_INFER_ONNX_HPP
#define OPENCV_GAPI_INFER_ONNX_HPP
#include <unordered_map>
#include <string>
#include <array>
#include <tuple> // tuple, tuple_size
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace onnx {
GAPI_EXPORTS cv::gapi::GBackend backend();
enum class TraitAs: int {
TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor
// and passes dimensions as-is
IMAGE //!< G-API traits an associated cv::Mat as an image so
// creates an "image" blob (NCHW/NHWC, etc)
};
using PostProc = std::function<void(const std::unordered_map<std::string, cv::Mat> &,
std::unordered_map<std::string, cv::Mat> &)>;
namespace detail {
struct ParamDesc {
std::string model_path;
// NB: nun_* may differ from topology's real input/output port numbers
// (e.g. topology's partial execution)
std::size_t num_in; // How many inputs are defined in the operation
std::size_t num_out; // How many outputs are defined in the operation
// NB: Here order follows the `Net` API
std::vector<std::string> input_names;
std::vector<std::string> output_names;
using ConstInput = std::pair<cv::Mat, TraitAs>;
std::unordered_map<std::string, ConstInput> const_inputs;
std::vector<cv::Scalar> mean;
std::vector<cv::Scalar> stdev;
std::vector<cv::GMatDesc> out_metas;
PostProc custom_post_proc;
std::vector<bool> normalize;
std::vector<std::string> names_to_remap;
};
} // namespace detail
template<typename Net>
struct PortCfg {
using In = std::array
< std::string
, std::tuple_size<typename Net::InArgs>::value >;
using Out = std::array
< std::string
, std::tuple_size<typename Net::OutArgs>::value >;
using NormCoefs = std::array
< cv::Scalar
, std::tuple_size<typename Net::InArgs>::value >;
using Normalize = std::array
< bool
, std::tuple_size<typename Net::InArgs>::value >;
};
template<typename Net> class Params {
public:
Params(const std::string &model) {
desc.model_path = model;
desc.num_in = std::tuple_size<typename Net::InArgs>::value;
desc.num_out = std::tuple_size<typename Net::OutArgs>::value;
};
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::onnx::backend(); }
std::string tag() const { return Net::tag(); }
cv::util::any params() const { return { desc }; }
// END(G-API's network parametrization API)
Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &ll) {
desc.input_names.assign(ll.begin(), ll.end());
return *this;
}
Params<Net>& cfgOutputLayers(const typename PortCfg<Net>::Out &ll) {
desc.output_names.assign(ll.begin(), ll.end());
return *this;
}
Params<Net>& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR) {
desc.const_inputs[layer_name] = {data, hint};
return *this;
}
Params<Net>& cfgMeanStd(const typename PortCfg<Net>::NormCoefs &m,
const typename PortCfg<Net>::NormCoefs &s) {
desc.mean.assign(m.begin(), m.end());
desc.stdev.assign(s.begin(), s.end());
return *this;
}
/** @brief Configures graph output and sets the post processing function from user.
The function is used for the case of infer of networks with dynamic outputs.
Since these networks haven't known output parameters needs provide them for
construction of output of graph.
The function provides meta information of outputs and post processing function.
Post processing function is used for copy information from ONNX infer's result
to output of graph which is allocated by out meta information.
@param out_metas out meta information.
@param pp post processing function, which has two parameters. First is onnx
result, second is graph output. Both parameters is std::map that contain pair of
layer's name and cv::Mat.
@return reference to object of class Params.
*/
Params<Net>& cfgPostProc(const std::vector<cv::GMatDesc> &out_metas,
const PostProc &pp) {
desc.out_metas = out_metas;
desc.custom_post_proc = pp;
return *this;
}
/** @overload
The function has rvalue parameters.
*/
Params<Net>& cfgPostProc(std::vector<cv::GMatDesc> &&out_metas,
PostProc &&pp) {
desc.out_metas = std::move(out_metas);
desc.custom_post_proc = std::move(pp);
return *this;
}
/** @overload
The function has additional parameter names_to_remap. This parameter provides
information about output layers which will be used for infer and in post
processing function.
@param out_metas out meta information.
@param pp post processing function.
@param names_to_remap contains names of output layers. CNN's infer will be done on these layers.
Infer's result will be processed in post processing function using these names.
@return reference to object of class Params.
*/
Params<Net>& cfgPostProc(const std::vector<cv::GMatDesc> &out_metas,
const PostProc &pp,
const std::vector<std::string> &names_to_remap) {
desc.out_metas = out_metas;
desc.custom_post_proc = pp;
desc.names_to_remap = names_to_remap;
return *this;
}
/** @overload
The function has rvalue parameters.
*/
Params<Net>& cfgPostProc(std::vector<cv::GMatDesc> &&out_metas,
PostProc &&pp,
std::vector<std::string> &&names_to_remap) {
desc.out_metas = std::move(out_metas);
desc.custom_post_proc = std::move(pp);
desc.names_to_remap = std::move(names_to_remap);
return *this;
}
Params<Net>& cfgNormalize(const typename PortCfg<Net>::Normalize &n) {
desc.normalize.assign(n.begin(), n.end());
return *this;
}
protected:
detail::ParamDesc desc;
};
} // namespace onnx
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_HPP