quaternion.hpp
65.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved.
// Third party copyrights are property of their respective owners.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: Liangqian Kong <chargerKong@126.com>
// Longbu Wang <riskiest@gmail.com>
#ifndef OPENCV_CORE_QUATERNION_HPP
#define OPENCV_CORE_QUATERNION_HPP
#include <opencv2/core.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <iostream>
namespace cv
{
//! @addtogroup core
//! @{
//! Unit quaternion flag
enum QuatAssumeType
{
/**
* This flag is specified by default.
* If this flag is specified, the input quaternions are assumed to be not unit quaternions.
* It can guarantee the correctness of the calculations,
* although the calculation speed will be slower than the flag QUAT_ASSUME_UNIT.
*/
QUAT_ASSUME_NOT_UNIT,
/**
* If this flag is specified, the input quaternions are assumed to be unit quaternions which
* will save some computations. However, if this flag is specified without unit quaternion,
* the program correctness of the result will not be guaranteed.
*/
QUAT_ASSUME_UNIT
};
class QuatEnum
{
public:
/** @brief Enum of Euler angles type.
*
* Without considering the possibility of using two different convertions for the definition of the rotation axes ,
* there exists twelve possible sequences of rotation axes, divided into two groups:
* - Proper Euler angles (Z-X-Z, X-Y-X, Y-Z-Y, Z-Y-Z, X-Z-X, Y-X-Y)
* - Tait–Bryan angles (X-Y-Z, Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X, Y-X-Z).
*
* The three elemental rotations may be [extrinsic](https://en.wikipedia.org/wiki/Euler_angles#Definition_by_extrinsic_rotations)
* (rotations about the axes *xyz* of the original coordinate system, which is assumed to remain motionless),
* or [intrinsic](https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations)(rotations about the axes of the rotating coordinate system *XYZ*, solidary with the moving body, which changes its orientation after each elemental rotation).
*
*
* Extrinsic and intrinsic rotations are relevant.
*
* The definition of the Euler angles is as following,
* - \f$\theta_1 \f$ represents the first rotation angle,
* - \f$\theta_2 \f$ represents the second rotation angle,
* - \f$\theta_3 \f$ represents the third rotation angle.
*
* For intrinsic rotations in the order of X-Y-Z, the rotation matrix R can be calculated by:\f[R =X(\theta_1) Y(\theta_2) Z(\theta_3) \f]
* For extrinsic rotations in the order of X-Y-Z, the rotation matrix R can be calculated by:\f[R =Z({\theta_3}) Y({\theta_2}) X({\theta_1})\f]
* where
* \f[X({\theta})={\begin{bmatrix}1&0&0\\0&\cos {\theta_1} &-\sin {\theta_1} \\0&\sin {\theta_1} &\cos {\theta_1} \\\end{bmatrix}},
* Y({\theta})={\begin{bmatrix}\cos \theta_{2}&0&\sin \theta_{2}\\0&1 &0 \\\ -sin \theta_2& 0&\cos \theta_{2} \\\end{bmatrix}},
* Z({\theta})={\begin{bmatrix}\cos\theta_{3} &-\sin \theta_3&0\\\sin \theta_3 &\cos \theta_3 &0\\0&0&1\\\end{bmatrix}}.
* \f]
*
* The function is designed according to this set of conventions:
* - [Right handed](https://en.wikipedia.org/wiki/Right_hand_rule) reference frames are adopted, and the [right hand rule](https://en.wikipedia.org/wiki/Right_hand_rule) is used to determine the sign of angles.
* - Each matrix is meant to represent an [active rotation](https://en.wikipedia.org/wiki/Active_and_passive_transformation) (the composing and composed matrices
* are supposed to act on the coordinates of vectors defined in the initial fixed reference frame and give as a result the coordinates of a rotated vector defined in the same reference frame).
* - For \f$\theta_1\f$ and \f$\theta_3\f$, the valid range is (−π, π].
*
* For \f$\theta_2\f$, the valid range is [−π/2, π/2] or [0, π].
*
* For Tait–Bryan angles, the valid range of \f$\theta_2\f$ is [−π/2, π/2]. When transforming a quaternion to Euler angles, the solution of Euler angles is unique in condition of \f$ \theta_2 \in (−π/2, π/2)\f$ .
* If \f$\theta_2 = −π/2 \f$ or \f$ \theta_2 = π/2\f$, there are infinite solutions. The common name for this situation is gimbal lock.
* For Proper Euler angles,the valid range of \f$\theta_2\f$ is in [0, π]. The solutions of Euler angles are unique in condition of \f$ \theta_2 \in (0, π)\f$ . If \f$\theta_2 =0 \f$ or \f$\theta_2 =π \f$,
* there are infinite solutions and gimbal lock will occur.
*/
enum EulerAnglesType
{
INT_XYZ, ///< Intrinsic rotations with the Euler angles type X-Y-Z
INT_XZY, ///< Intrinsic rotations with the Euler angles type X-Z-Y
INT_YXZ, ///< Intrinsic rotations with the Euler angles type Y-X-Z
INT_YZX, ///< Intrinsic rotations with the Euler angles type Y-Z-X
INT_ZXY, ///< Intrinsic rotations with the Euler angles type Z-X-Y
INT_ZYX, ///< Intrinsic rotations with the Euler angles type Z-Y-X
INT_XYX, ///< Intrinsic rotations with the Euler angles type X-Y-X
INT_XZX, ///< Intrinsic rotations with the Euler angles type X-Z-X
INT_YXY, ///< Intrinsic rotations with the Euler angles type Y-X-Y
INT_YZY, ///< Intrinsic rotations with the Euler angles type Y-Z-Y
INT_ZXZ, ///< Intrinsic rotations with the Euler angles type Z-X-Z
INT_ZYZ, ///< Intrinsic rotations with the Euler angles type Z-Y-Z
EXT_XYZ, ///< Extrinsic rotations with the Euler angles type X-Y-Z
EXT_XZY, ///< Extrinsic rotations with the Euler angles type X-Z-Y
EXT_YXZ, ///< Extrinsic rotations with the Euler angles type Y-X-Z
EXT_YZX, ///< Extrinsic rotations with the Euler angles type Y-Z-X
EXT_ZXY, ///< Extrinsic rotations with the Euler angles type Z-X-Y
EXT_ZYX, ///< Extrinsic rotations with the Euler angles type Z-Y-X
EXT_XYX, ///< Extrinsic rotations with the Euler angles type X-Y-X
EXT_XZX, ///< Extrinsic rotations with the Euler angles type X-Z-X
EXT_YXY, ///< Extrinsic rotations with the Euler angles type Y-X-Y
EXT_YZY, ///< Extrinsic rotations with the Euler angles type Y-Z-Y
EXT_ZXZ, ///< Extrinsic rotations with the Euler angles type Z-X-Z
EXT_ZYZ, ///< Extrinsic rotations with the Euler angles type Z-Y-Z
#ifndef CV_DOXYGEN
EULER_ANGLES_MAX_VALUE
#endif
};
};
template <typename _Tp> class Quat;
template <typename _Tp> std::ostream& operator<<(std::ostream&, const Quat<_Tp>&);
/**
* Quaternion is a number system that extends the complex numbers. It can be expressed as a
* rotation in three-dimensional space.
* A quaternion is generally represented in the form:
* \f[q = w + x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}\f]
* \f[q = [w, x, y, z]\f]
* \f[q = [w, \boldsymbol{v}] \f]
* \f[q = ||q||[\cos\psi, u_x\sin\psi,u_y\sin\psi, u_z\sin\psi].\f]
* \f[q = ||q||[\cos\psi, \boldsymbol{u}\sin\psi]\f]
* where \f$\psi = \frac{\theta}{2}\f$, \f$\theta\f$ represents rotation angle,
* \f$\boldsymbol{u} = [u_x, u_y, u_z]\f$ represents normalized rotation axis,
* and \f$||q||\f$ represents the norm of \f$q\f$.
*
* A unit quaternion is usually represents rotation, which has the form:
* \f[q = [\cos\psi, u_x\sin\psi,u_y\sin\psi, u_z\sin\psi].\f]
*
* To create a quaternion representing the rotation around the axis \f$\boldsymbol{u}\f$
* with angle \f$\theta\f$, you can use
* ```
* using namespace cv;
* double angle = CV_PI;
* Vec3d axis = {0, 0, 1};
* Quatd q = Quatd::createFromAngleAxis(angle, axis);
* ```
*
* You can simply use four same type number to create a quaternion
* ```
* Quatd q(1, 2, 3, 4);
* ```
* Or use a Vec4d or Vec4f vector.
* ```
* Vec4d vec{1, 2, 3, 4};
* Quatd q(vec);
* ```
*
* ```
* Vec4f vec{1, 2, 3, 4};
* Quatf q(vec);
* ```
*
* If you already have a 3x3 rotation matrix R, then you can use
* ```
* Quatd q = Quatd::createFromRotMat(R);
* ```
*
* If you already have a rotation vector rvec which has the form of `angle * axis`, then you can use
* ```
* Quatd q = Quatd::createFromRvec(rvec);
* ```
*
* To extract the rotation matrix from quaternion, see toRotMat3x3()
*
* To extract the Vec4d or Vec4f, see toVec()
*
* To extract the rotation vector, see toRotVec()
*
* If there are two quaternions \f$q_0, q_1\f$ are needed to interpolate, you can use nlerp(), slerp() or spline()
* ```
* Quatd::nlerp(q0, q1, t)
*
* Quatd::slerp(q0, q1, t)
*
* Quatd::spline(q0, q0, q1, q1, t)
* ```
* spline can smoothly connect rotations of multiple quaternions
*
* Three ways to get an element in Quaternion
* ```
* Quatf q(1,2,3,4);
* std::cout << q.w << std::endl; // w=1, x=2, y=3, z=4
* std::cout << q[0] << std::endl; // q[0]=1, q[1]=2, q[2]=3, q[3]=4
* std::cout << q.at(0) << std::endl;
* ```
*/
template <typename _Tp>
class Quat
{
static_assert(std::is_floating_point<_Tp>::value, "Quaternion only make sense with type of float or double");
using value_type = _Tp;
public:
static constexpr _Tp CV_QUAT_EPS = (_Tp)1.e-6;
static constexpr _Tp CV_QUAT_CONVERT_THRESHOLD = (_Tp)1.e-6;
Quat();
/**
* @brief From Vec4d or Vec4f.
*/
explicit Quat(const Vec<_Tp, 4> &coeff);
/**
* @brief from four numbers.
*/
Quat(_Tp w, _Tp x, _Tp y, _Tp z);
/**
* @brief from an angle, axis. Axis will be normalized in this function. And
* it generates
* \f[q = [\cos\psi, u_x\sin\psi,u_y\sin\psi, u_z\sin\psi].\f]
* where \f$\psi = \frac{\theta}{2}\f$, \f$\theta\f$ is the rotation angle.
*/
static Quat<_Tp> createFromAngleAxis(const _Tp angle, const Vec<_Tp, 3> &axis);
/**
* @brief from a 3x3 rotation matrix.
*/
static Quat<_Tp> createFromRotMat(InputArray R);
/**
* @brief from a rotation vector
* \f$r\f$ has the form \f$\theta \cdot \boldsymbol{u}\f$, where \f$\theta\f$
* represents rotation angle and \f$\boldsymbol{u}\f$ represents normalized rotation axis.
*
* Angle and axis could be easily derived as:
* \f[
* \begin{equation}
* \begin{split}
* \psi &= ||r||\\
* \boldsymbol{u} &= \frac{r}{\theta}
* \end{split}
* \end{equation}
* \f]
* Then a quaternion can be calculated by
* \f[q = [\cos\psi, \boldsymbol{u}\sin\psi]\f]
* where \f$\psi = \theta / 2 \f$
*/
static Quat<_Tp> createFromRvec(InputArray rvec);
/**
* @brief
* from Euler angles
*
* A quaternion can be generated from Euler angles by combining the quaternion representations of the Euler rotations.
*
* For example, if we use intrinsic rotations in the order of X-Y-Z,\f$\theta_1 \f$ is rotation around the X-axis, \f$\theta_2 \f$ is rotation around the Y-axis,
* \f$\theta_3 \f$ is rotation around the Z-axis. The final quaternion q can be calculated by
*
* \f[ {q} = q_{X, \theta_1} q_{Y, \theta_2} q_{Z, \theta_3}\f]
* where \f$ q_{X, \theta_1} \f$ is created from @ref createFromXRot, \f$ q_{Y, \theta_2} \f$ is created from @ref createFromYRot,
* \f$ q_{Z, \theta_3} \f$ is created from @ref createFromZRot.
* @param angles the Euler angles in a vector of length 3
* @param eulerAnglesType the convertion Euler angles type
*/
static Quat<_Tp> createFromEulerAngles(const Vec<_Tp, 3> &angles, QuatEnum::EulerAnglesType eulerAnglesType);
/**
* @brief get a quaternion from a rotation about the Y-axis by \f$\theta\f$ .
* \f[q = \cos(\theta/2)+0 i+ sin(\theta/2) j +0k \f]
*/
static Quat<_Tp> createFromYRot(const _Tp theta);
/**
* @brief get a quaternion from a rotation about the X-axis by \f$\theta\f$ .
* \f[q = \cos(\theta/2)+sin(\theta/2) i +0 j +0 k \f]
*/
static Quat<_Tp> createFromXRot(const _Tp theta);
/**
* @brief get a quaternion from a rotation about the Z-axis by \f$\theta\f$.
* \f[q = \cos(\theta/2)+0 i +0 j +sin(\theta/2) k \f]
*/
static Quat<_Tp> createFromZRot(const _Tp theta);
/**
* @brief a way to get element.
* @param index over a range [0, 3].
*
* A quaternion q
*
* q.at(0) is equivalent to q.w,
*
* q.at(1) is equivalent to q.x,
*
* q.at(2) is equivalent to q.y,
*
* q.at(3) is equivalent to q.z.
*/
_Tp at(size_t index) const;
/**
* @brief return the conjugate of this quaternion.
* \f[q.conjugate() = (w, -x, -y, -z).\f]
*/
Quat<_Tp> conjugate() const;
/**
*
* @brief return the value of exponential value.
* \f[\exp(q) = e^w (\cos||\boldsymbol{v}||+ \frac{v}{||\boldsymbol{v}||})\sin||\boldsymbol{v}||\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example:
* ```
* Quatd q{1,2,3,4};
* cout << exp(q) << endl;
* ```
*/
template <typename T>
friend Quat<T> exp(const Quat<T> &q);
/**
* @brief return the value of exponential value.
* \f[\exp(q) = e^w (\cos||\boldsymbol{v}||+ \frac{v}{||\boldsymbol{v}||}\sin||\boldsymbol{v}||)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q{1,2,3,4};
* cout << q.exp() << endl;
* ```
*/
Quat<_Tp> exp() const;
/**
* @brief return the value of logarithm function.
* \f[\ln(q) = \ln||q|| + \frac{\boldsymbol{v}}{||\boldsymbol{v}||}\arccos\frac{w}{||q||}.\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
* @param assumeUnit if QUAT_ASSUME_UNIT, q assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd q1{1,2,3,4};
* cout << log(q1) << endl;
* ```
*/
template <typename T>
friend Quat<T> log(const Quat<T> &q, QuatAssumeType assumeUnit);
/**
* @brief return the value of logarithm function.
* \f[\ln(q) = \ln||q|| + \frac{\boldsymbol{v}}{||\boldsymbol{v}||}\arccos\frac{w}{||q||}\f].
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.log();
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* Quatd q1(1,2,3,4);
* q1.normalize().log(assumeUnit);
* ```
*/
Quat<_Tp> log(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the value of power function with index \f$x\f$.
* \f[q^x = ||q||(cos(x\theta) + \boldsymbol{u}sin(x\theta))).\f]
* @param q a quaternion.
* @param x index of exponentiation.
* @param assumeUnit if QUAT_ASSUME_UNIT, quaternion q assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd q(1,2,3,4);
* power(q, 2.0);
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* double angle = CV_PI;
* Vec3d axis{0, 0, 1};
* Quatd q1 = Quatd::createFromAngleAxis(angle, axis); //generate a unit quat by axis and angle
* power(q1, 2.0, assumeUnit);//This assumeUnit means q1 is a unit quaternion.
* ```
* @note the type of the index should be the same as the quaternion.
*/
template <typename T>
friend Quat<T> power(const Quat<T> &q, const T x, QuatAssumeType assumeUnit);
/**
* @brief return the value of power function with index \f$x\f$.
* \f[q^x = ||q||(\cos(x\theta) + \boldsymbol{u}\sin(x\theta))).\f]
* @param x index of exponentiation.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.power(2.0);
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* double angle = CV_PI;
* Vec3d axis{0, 0, 1};
* Quatd q1 = Quatd::createFromAngleAxis(angle, axis); //generate a unit quat by axis and angle
* q1.power(2.0, assumeUnit); //This assumeUnt means q1 is a unit quaternion
* ```
*/
Quat<_Tp> power(const _Tp x, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return \f$\sqrt{q}\f$.
* @param q a quaternion.
* @param assumeUnit if QUAT_ASSUME_UNIT, quaternion q assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatf q(1,2,3,4);
* sqrt(q);
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* q = {1,0,0,0};
* sqrt(q, assumeUnit); //This assumeUnit means q is a unit quaternion.
* ```
*/
template <typename T>
friend Quat<T> sqrt(const Quat<T> &q, QuatAssumeType assumeUnit);
/**
* @brief return \f$\sqrt{q}\f$.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatf q(1,2,3,4);
* q.sqrt();
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* q = {1,0,0,0};
* q.sqrt(assumeUnit); //This assumeUnit means q is a unit quaternion
* ```
*/
Quat<_Tp> sqrt(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the value of power function with quaternion \f$q\f$.
* \f[p^q = e^{q\ln(p)}.\f]
* @param p base quaternion of power function.
* @param q index quaternion of power function.
* @param assumeUnit if QUAT_ASSUME_UNIT, quaternion \f$p\f$ assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd p(1,2,3,4);
* Quatd q(5,6,7,8);
* power(p, q);
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* p = p.normalize();
* power(p, q, assumeUnit); //This assumeUnit means p is a unit quaternion
* ```
*/
template <typename T>
friend Quat<T> power(const Quat<T> &p, const Quat<T> &q, QuatAssumeType assumeUnit);
/**
* @brief return the value of power function with quaternion \f$q\f$.
* \f[p^q = e^{q\ln(p)}.\f]
* @param q index quaternion of power function.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd p(1,2,3,4);
* Quatd q(5,6,7,8);
* p.power(q);
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* p = p.normalize();
* p.power(q, assumeUnit); //This assumeUnit means p is a unit quaternion
* ```
*/
Quat<_Tp> power(const Quat<_Tp> &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the crossProduct between \f$p = (a, b, c, d) = (a, \boldsymbol{u})\f$ and \f$q = (w, x, y, z) = (w, \boldsymbol{v})\f$.
* \f[p \times q = \frac{pq- qp}{2}\f]
* \f[p \times q = \boldsymbol{u} \times \boldsymbol{v}\f]
* \f[p \times q = (cz-dy)i + (dx-bz)j + (by-xc)k \f]
*
* For example
* ```
* Quatd q{1,2,3,4};
* Quatd p{5,6,7,8};
* crossProduct(p, q);
* ```
*/
template <typename T>
friend Quat<T> crossProduct(const Quat<T> &p, const Quat<T> &q);
/**
* @brief return the crossProduct between \f$p = (a, b, c, d) = (a, \boldsymbol{u})\f$ and \f$q = (w, x, y, z) = (w, \boldsymbol{v})\f$.
* \f[p \times q = \frac{pq- qp}{2}.\f]
* \f[p \times q = \boldsymbol{u} \times \boldsymbol{v}.\f]
* \f[p \times q = (cz-dy)i + (dx-bz)j + (by-xc)k. \f]
*
* For example
* ```
* Quatd q{1,2,3,4};
* Quatd p{5,6,7,8};
* p.crossProduct(q)
* ```
*/
Quat<_Tp> crossProduct(const Quat<_Tp> &q) const;
/**
* @brief return the norm of quaternion.
* \f[||q|| = \sqrt{w^2 + x^2 + y^2 + z^2}.\f]
*/
_Tp norm() const;
/**
* @brief return a normalized \f$p\f$.
* \f[p = \frac{q}{||q||}\f]
* where \f$p\f$ satisfies \f$(p.x)^2 + (p.y)^2 + (p.z)^2 + (p.w)^2 = 1.\f$
*/
Quat<_Tp> normalize() const;
/**
* @brief return \f$q^{-1}\f$ which is an inverse of \f$q\f$
* which satisfies \f$q * q^{-1} = 1\f$.
* @param q a quaternion.
* @param assumeUnit if QUAT_ASSUME_UNIT, quaternion q assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd q(1,2,3,4);
* inv(q);
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* q = q.normalize();
* inv(q, assumeUnit);//This assumeUnit means p is a unit quaternion
* ```
*/
template <typename T>
friend Quat<T> inv(const Quat<T> &q, QuatAssumeType assumeUnit);
/**
* @brief return \f$q^{-1}\f$ which is an inverse of \f$q\f$
* satisfying \f$q * q^{-1} = 1\f$.
* @param assumeUnit if QUAT_ASSUME_UNIT, quaternion q assume to be a unit quaternion and this function will save some computations.
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.inv();
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* q = q.normalize();
* q.inv(assumeUnit); //assumeUnit means p is a unit quaternion
* ```
*/
Quat<_Tp> inv(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return sinh value of quaternion q, sinh could be calculated as:
* \f[\sinh(p) = \sin(w)\cos(||\boldsymbol{v}||) + \cosh(w)\frac{v}{||\boldsymbol{v}||}\sin||\boldsymbol{v}||\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* sinh(q);
* ```
*/
template <typename T>
friend Quat<T> sinh(const Quat<T> &q);
/**
* @brief return sinh value of this quaternion, sinh could be calculated as:
* \f$\sinh(p) = \sin(w)\cos(||\boldsymbol{v}||) + \cosh(w)\frac{v}{||\boldsymbol{v}||}\sin||\boldsymbol{v}||\f$
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.sinh();
* ```
*/
Quat<_Tp> sinh() const;
/**
* @brief return cosh value of quaternion q, cosh could be calculated as:
* \f[\cosh(p) = \cosh(w) * \cos(||\boldsymbol{v}||) + \sinh(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sin(||\boldsymbol{v}||)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* cosh(q);
* ```
*/
template <typename T>
friend Quat<T> cosh(const Quat<T> &q);
/**
* @brief return cosh value of this quaternion, cosh could be calculated as:
* \f[\cosh(p) = \cosh(w) * \cos(||\boldsymbol{v}||) + \sinh(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}sin(||\boldsymbol{v}||)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.cosh();
* ```
*/
Quat<_Tp> cosh() const;
/**
* @brief return tanh value of quaternion q, tanh could be calculated as:
* \f[ \tanh(q) = \frac{\sinh(q)}{\cosh(q)}.\f]
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* tanh(q);
* ```
* @sa sinh, cosh
*/
template <typename T>
friend Quat<T> tanh(const Quat<T> &q);
/**
* @brief return tanh value of this quaternion, tanh could be calculated as:
* \f[ \tanh(q) = \frac{\sinh(q)}{\cosh(q)}.\f]
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.tanh();
* ```
* @sa sinh, cosh
*/
Quat<_Tp> tanh() const;
/**
* @brief return tanh value of quaternion q, sin could be calculated as:
* \f[\sin(p) = \sin(w) * \cosh(||\boldsymbol{v}||) + \cos(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sinh(||\boldsymbol{v}||)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* sin(q);
* ```
*/
template <typename T>
friend Quat<T> sin(const Quat<T> &q);
/**
* @brief return sin value of this quaternion, sin could be calculated as:
* \f[\sin(p) = \sin(w) * \cosh(||\boldsymbol{v}||) + \cos(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sinh(||\boldsymbol{v}||)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.sin();
* ```
*/
Quat<_Tp> sin() const;
/**
* @brief return sin value of quaternion q, cos could be calculated as:
* \f[\cos(p) = \cos(w) * \cosh(||\boldsymbol{v}||) - \sin(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sinh(||\boldsymbol{v}||)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* cos(q);
* ```
*/
template <typename T>
friend Quat<T> cos(const Quat<T> &q);
/**
* @brief return cos value of this quaternion, cos could be calculated as:
* \f[\cos(p) = \cos(w) * \cosh(||\boldsymbol{v}||) - \sin(w)\frac{\boldsymbol{v}}{||\boldsymbol{v}||}\sinh(||\boldsymbol{v}||)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.cos();
* ```
*/
Quat<_Tp> cos() const;
/**
* @brief return tan value of quaternion q, tan could be calculated as:
* \f[\tan(q) = \frac{\sin(q)}{\cos(q)}.\f]
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* tan(q);
* ```
*/
template <typename T>
friend Quat<T> tan(const Quat<T> &q);
/**
* @brief return tan value of this quaternion, tan could be calculated as:
* \f[\tan(q) = \frac{\sin(q)}{\cos(q)}.\f]
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.tan();
* ```
*/
Quat<_Tp> tan() const;
/**
* @brief return arcsin value of quaternion q, arcsin could be calculated as:
* \f[\arcsin(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arcsinh(q\frac{\boldsymbol{v}}{||\boldsymbol{v}||})\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* asin(q);
* ```
*/
template <typename T>
friend Quat<T> asin(const Quat<T> &q);
/**
* @brief return arcsin value of this quaternion, arcsin could be calculated as:
* \f[\arcsin(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arcsinh(q\frac{\boldsymbol{v}}{||\boldsymbol{v}||})\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.asin();
* ```
*/
Quat<_Tp> asin() const;
/**
* @brief return arccos value of quaternion q, arccos could be calculated as:
* \f[\arccos(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arccosh(q)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* acos(q);
* ```
*/
template <typename T>
friend Quat<T> acos(const Quat<T> &q);
/**
* @brief return arccos value of this quaternion, arccos could be calculated as:
* \f[\arccos(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arccosh(q)\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.acos();
* ```
*/
Quat<_Tp> acos() const;
/**
* @brief return arctan value of quaternion q, arctan could be calculated as:
* \f[\arctan(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arctanh(q\frac{\boldsymbol{v}}{||\boldsymbol{v}||})\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* atan(q);
* ```
*/
template <typename T>
friend Quat<T> atan(const Quat<T> &q);
/**
* @brief return arctan value of this quaternion, arctan could be calculated as:
* \f[\arctan(q) = -\frac{\boldsymbol{v}}{||\boldsymbol{v}||}arctanh(q\frac{\boldsymbol{v}}{||\boldsymbol{v}||})\f]
* where \f$\boldsymbol{v} = [x, y, z].\f$
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.atan();
* ```
*/
Quat<_Tp> atan() const;
/**
* @brief return arcsinh value of quaternion q, arcsinh could be calculated as:
* \f[arcsinh(q) = \ln(q + \sqrt{q^2 + 1})\f].
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* asinh(q);
* ```
*/
template <typename T>
friend Quat<T> asinh(const Quat<T> &q);
/**
* @brief return arcsinh value of this quaternion, arcsinh could be calculated as:
* \f[arcsinh(q) = \ln(q + \sqrt{q^2 + 1})\f].
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.asinh();
* ```
*/
Quat<_Tp> asinh() const;
/**
* @brief return arccosh value of quaternion q, arccosh could be calculated as:
* \f[arccosh(q) = \ln(q + \sqrt{q^2 - 1})\f].
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* acosh(q);
* ```
*/
template <typename T>
friend Quat<T> acosh(const Quat<T> &q);
/**
* @brief return arccosh value of this quaternion, arccosh could be calculated as:
* \f[arcosh(q) = \ln(q + \sqrt{q^2 - 1})\f].
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.acosh();
* ```
*/
Quat<_Tp> acosh() const;
/**
* @brief return arctanh value of quaternion q, arctanh could be calculated as:
* \f[arctanh(q) = \frac{\ln(q + 1) - \ln(1 - q)}{2}\f].
* @param q a quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* atanh(q);
* ```
*/
template <typename T>
friend Quat<T> atanh(const Quat<T> &q);
/**
* @brief return arctanh value of this quaternion, arctanh could be calculated as:
* \f[arcsinh(q) = \frac{\ln(q + 1) - \ln(1 - q)}{2}\f].
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.atanh();
* ```
*/
Quat<_Tp> atanh() const;
/**
* @brief return true if this quaternion is a unit quaternion.
* @param eps tolerance scope of normalization. The eps could be defined as
*
* \f[eps = |1 - dotValue|\f] where \f[dotValue = (this.w^2 + this.x^2 + this,y^2 + this.z^2).\f]
* And this function will consider it is normalized when the dotValue over a range \f$[1-eps, 1+eps]\f$.
*/
bool isNormal(_Tp eps=CV_QUAT_EPS) const;
/**
* @brief to throw an error if this quaternion is not a unit quaternion.
* @param eps tolerance scope of normalization.
* @sa isNormal
*/
void assertNormal(_Tp eps=CV_QUAT_EPS) const;
/**
* @brief transform a quaternion to a 3x3 rotation matrix.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and
* this function will save some computations. Otherwise, this function will normalize this
* quaternion at first then do the transformation.
*
* @note Matrix A which is to be rotated should have the form
* \f[\begin{bmatrix}
* x_0& x_1& x_2&...&x_n\\
* y_0& y_1& y_2&...&y_n\\
* z_0& z_1& z_2&...&z_n
* \end{bmatrix}\f]
* where the same subscript represents a point. The shape of A assume to be [3, n]
* The points matrix A can be rotated by toRotMat3x3() * A.
* The result has 3 rows and n columns too.
* For example
* ```
* double angle = CV_PI;
* Vec3d axis{0,0,1};
* Quatd q_unit = Quatd::createFromAngleAxis(angle, axis); //quaternion could also be get by interpolation by two or more quaternions.
*
* //assume there is two points (1,0,0) and (1,0,1) to be rotated
* Mat pointsA = (Mat_<double>(2, 3) << 1,0,0,1,0,1);
* //change the shape
* pointsA = pointsA.t();
* // rotate 180 degrees around the z axis
* Mat new_point = q_unit.toRotMat3x3() * pointsA;
* // print two points
* cout << new_point << endl;
* ```
*/
Matx<_Tp, 3, 3> toRotMat3x3(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief transform a quaternion to a 4x4 rotation matrix.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and
* this function will save some computations. Otherwise, this function will normalize this
* quaternion at first then do the transformation.
*
* The operations is similar as toRotMat3x3
* except that the points matrix should have the form
* \f[\begin{bmatrix}
* x_0& x_1& x_2&...&x_n\\
* y_0& y_1& y_2&...&y_n\\
* z_0& z_1& z_2&...&z_n\\
* 0&0&0&...&0
* \end{bmatrix}\f]
*
* @sa toRotMat3x3
*/
Matx<_Tp, 4, 4> toRotMat4x4(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief transform the this quaternion to a Vec<T, 4>.
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.toVec();
* ```
*/
Vec<_Tp, 4> toVec() const;
/**
* @brief transform this quaternion to a Rotation vector.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and
* this function will save some computations.
* Rotation vector rVec is defined as:
* \f[ rVec = [\theta v_x, \theta v_y, \theta v_z]\f]
* where \f$\theta\f$ represents rotation angle, and \f$\boldsymbol{v}\f$ represents the normalized rotation axis.
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.toRotVec();
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* q.normalize().toRotVec(assumeUnit); //answer is same as q.toRotVec().
* ```
*/
Vec<_Tp, 3> toRotVec(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief get the angle of quaternion, it returns the rotation angle.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and
* this function will save some computations.
* \f[\psi = 2 *arccos(\frac{w}{||q||})\f]
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.getAngle();
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* q.normalize().getAngle(assumeUnit);//same as q.getAngle().
* ```
* @note It always return the value between \f$[0, 2\pi]\f$.
*/
_Tp getAngle(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief get the axis of quaternion, it returns a vector of length 3.
* @param assumeUnit if QUAT_ASSUME_UNIT, this quaternion assume to be a unit quaternion and
* this function will save some computations.
*
* the unit axis \f$\boldsymbol{u}\f$ is defined by
* \f[\begin{equation}
* \begin{split}
* \boldsymbol{v}
* &= \boldsymbol{u} ||\boldsymbol{v}||\\
* &= \boldsymbol{u}||q||sin(\frac{\theta}{2})
* \end{split}
* \end{equation}\f]
* where \f$v=[x, y ,z]\f$ and \f$\theta\f$ represents rotation angle.
*
*
* For example
* ```
* Quatd q(1,2,3,4);
* q.getAxis();
*
* QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT;
* q.normalize().getAxis(assumeUnit);//same as q.getAxis()
* ```
*/
Vec<_Tp, 3> getAxis(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the dot between quaternion \f$q\f$ and this quaternion.
*
* dot(p, q) is a good metric of how close the quaternions are.
* Indeed, consider the unit quaternion difference \f$p^{-1} * q\f$, its real part is dot(p, q).
* At the same time its real part is equal to \f$\cos(\beta/2)\f$ where \f$\beta\f$ is
* an angle of rotation between p and q, i.e.,
* Therefore, the closer dot(p, q) to 1,
* the smaller rotation between them.
* \f[p \cdot q = p.w \cdot q.w + p.x \cdot q.x + p.y \cdot q.y + p.z \cdot q.z\f]
* @param q the other quaternion.
*
* For example
* ```
* Quatd q(1,2,3,4);
* Quatd p(5,6,7,8);
* p.dot(q);
* ```
*/
_Tp dot(Quat<_Tp> q) const;
/**
* @brief To calculate the interpolation from \f$q_0\f$ to \f$q_1\f$ by Linear Interpolation(Nlerp)
* For two quaternions, this interpolation curve can be displayed as:
* \f[Lerp(q_0, q_1, t) = (1 - t)q_0 + tq_1.\f]
* Obviously, the lerp will interpolate along a straight line if we think of \f$q_0\f$ and \f$q_1\f$ as a vector
* in a two-dimensional space. When \f$t = 0\f$, it returns \f$q_0\f$ and when \f$t= 1\f$, it returns \f$q_1\f$.
* \f$t\f$ should to be ranged in \f$[0, 1]\f$ normally.
* @param q0 a quaternion used in linear interpolation.
* @param q1 a quaternion used in linear interpolation.
* @param t percent of vector \f$\overrightarrow{q_0q_1}\f$ over a range [0, 1].
* @note it returns a non-unit quaternion.
*/
static Quat<_Tp> lerp(const Quat<_Tp> &q0, const Quat &q1, const _Tp t);
/**
* @brief To calculate the interpolation from \f$q_0\f$ to \f$q_1\f$ by Normalized Linear Interpolation(Nlerp).
* it returns a normalized quaternion of Linear Interpolation(Lerp).
* \f[ Nlerp(q_0, q_1, t) = \frac{(1 - t)q_0 + tq_1}{||(1 - t)q_0 + tq_1||}.\f]
* The interpolation will always choose the shortest path but the constant speed is not guaranteed.
* @param q0 a quaternion used in normalized linear interpolation.
* @param q1 a quaternion used in normalized linear interpolation.
* @param t percent of vector \f$\overrightarrow{q_0q_1}\f$ over a range [0, 1].
* @param assumeUnit if QUAT_ASSUME_UNIT, all input quaternions assume to be unit quaternion. Otherwise, all inputs
quaternion will be normalized inside the function.
* @sa lerp
*/
static Quat<_Tp> nlerp(const Quat<_Tp> &q0, const Quat &q1, const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
/**
@brief To calculate the interpolation between \f$q_0\f$ and \f$q_1\f$ by Spherical Linear
Interpolation(Slerp), which can be defined as:
\f[ Slerp(q_0, q_1, t) = \frac{\sin((1-t)\theta)}{\sin(\theta)}q_0 + \frac{\sin(t\theta)}{\sin(\theta)}q_1\f]
where \f$\theta\f$ can be calculated as:
\f[\theta=cos^{-1}(q_0\cdot q_1)\f]
resulting from the both of their norm is unit.
@param q0 a quaternion used in Slerp.
@param q1 a quaternion used in Slerp.
@param t percent of angle between \f$q_0\f$ and \f$q_1\f$ over a range [0, 1].
@param assumeUnit if QUAT_ASSUME_UNIT, all input quaternions assume to be unit quaternions. Otherwise, all input
quaternions will be normalized inside the function.
@param directChange if QUAT_ASSUME_UNIT, the interpolation will choose the nearest path.
@note If the interpolation angle is small, the error between Nlerp and Slerp is not so large. To improve efficiency and
avoid zero division error, we use Nlerp instead of Slerp.
*/
static Quat<_Tp> slerp(const Quat<_Tp> &q0, const Quat &q1, const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT, bool directChange=true);
/**
* @brief To calculate the interpolation between \f$q_0\f$,\f$q_1\f$,\f$q_2\f$,\f$q_3\f$ by Spherical and quadrangle(Squad). This could be defined as:
* \f[Squad(q_i, s_i, s_{i+1}, q_{i+1}, t) = Slerp(Slerp(q_i, q_{i+1}, t), Slerp(s_i, s_{i+1}, t), 2t(1-t))\f]
* where
* \f[s_i = q_i\exp(-\frac{\log(q^*_iq_{i+1}) + \log(q^*_iq_{i-1})}{4})\f]
*
* The Squad expression is analogous to the \f$B\acute{e}zier\f$ curve, but involves spherical linear
* interpolation instead of simple linear interpolation. Each \f$s_i\f$ needs to be calculated by three
* quaternions.
*
* @param q0 the first quaternion.
* @param s0 the second quaternion.
* @param s1 the third quaternion.
* @param q1 thr fourth quaternion.
* @param t interpolation parameter of quadratic and linear interpolation over a range \f$[0, 1]\f$.
* @param assumeUnit if QUAT_ASSUME_UNIT, all input quaternions assume to be unit quaternion. Otherwise, all input
* quaternions will be normalized inside the function.
* @param directChange if QUAT_ASSUME_UNIT, squad will find the nearest path to interpolate.
* @sa interPoint, spline
*/
static Quat<_Tp> squad(const Quat<_Tp> &q0, const Quat<_Tp> &s0,
const Quat<_Tp> &s1, const Quat<_Tp> &q1,
const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT,
bool directChange=true);
/**
* @brief This is the part calculation of squad.
* To calculate the intermedia quaternion \f$s_i\f$ between each three quaternion
* \f[s_i = q_i\exp(-\frac{\log(q^*_iq_{i+1}) + \log(q^*_iq_{i-1})}{4}).\f]
* @param q0 the first quaternion.
* @param q1 the second quaternion.
* @param q2 the third quaternion.
* @param assumeUnit if QUAT_ASSUME_UNIT, all input quaternions assume to be unit quaternion. Otherwise, all input
* quaternions will be normalized inside the function.
* @sa squad
*/
static Quat<_Tp> interPoint(const Quat<_Tp> &q0, const Quat<_Tp> &q1,
const Quat<_Tp> &q2, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
/**
* @brief to calculate a quaternion which is the result of a \f$C^1\f$ continuous
* spline curve constructed by squad at the ratio t. Here, the interpolation values are
* between \f$q_1\f$ and \f$q_2\f$. \f$q_0\f$ and \f$q_2\f$ are used to ensure the \f$C^1\f$
* continuity. if t = 0, it returns \f$q_1\f$, if t = 1, it returns \f$q_2\f$.
* @param q0 the first input quaternion to ensure \f$C^1\f$ continuity.
* @param q1 the second input quaternion.
* @param q2 the third input quaternion.
* @param q3 the fourth input quaternion the same use of \f$q1\f$.
* @param t ratio over a range [0, 1].
* @param assumeUnit if QUAT_ASSUME_UNIT, \f$q_0, q_1, q_2, q_3\f$ assume to be unit quaternion. Otherwise, all input
* quaternions will be normalized inside the function.
*
* For example:
*
* If there are three double quaternions \f$v_0, v_1, v_2\f$ waiting to be interpolated.
*
* Interpolation between \f$v_0\f$ and \f$v_1\f$ with a ratio \f$t_0\f$ could be calculated as
* ```
* Quatd::spline(v0, v0, v1, v2, t0);
* ```
* Interpolation between \f$v_1\f$ and \f$v_2\f$ with a ratio \f$t_0\f$ could be calculated as
* ```
* Quatd::spline(v0, v1, v2, v2, t0);
* ```
* @sa squad, slerp
*/
static Quat<_Tp> spline(const Quat<_Tp> &q0, const Quat<_Tp> &q1,
const Quat<_Tp> &q2, const Quat<_Tp> &q3,
const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
/**
* @brief Return opposite quaternion \f$-p\f$
* which satisfies \f$p + (-p) = 0.\f$
*
* For example
* ```
* Quatd q{1, 2, 3, 4};
* std::cout << -q << std::endl; // [-1, -2, -3, -4]
* ```
*/
Quat<_Tp> operator-() const;
/**
* @brief return true if two quaternions p and q are nearly equal, i.e. when the absolute
* value of each \f$p_i\f$ and \f$q_i\f$ is less than CV_QUAT_EPS.
*/
bool operator==(const Quat<_Tp>&) const;
/**
* @brief Addition operator of two quaternions p and q.
* It returns a new quaternion that each value is the sum of \f$p_i\f$ and \f$q_i\f$.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* std::cout << p + q << std::endl; //[6, 8, 10, 12]
* ```
*/
Quat<_Tp> operator+(const Quat<_Tp>&) const;
/**
* @brief Addition assignment operator of two quaternions p and q.
* It adds right operand to the left operand and assign the result to left operand.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* p += q; // equivalent to p = p + q
* std::cout << p << std::endl; //[6, 8, 10, 12]
*
* ```
*/
Quat<_Tp>& operator+=(const Quat<_Tp>&);
/**
* @brief Subtraction operator of two quaternions p and q.
* It returns a new quaternion that each value is the sum of \f$p_i\f$ and \f$-q_i\f$.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* std::cout << p - q << std::endl; //[-4, -4, -4, -4]
* ```
*/
Quat<_Tp> operator-(const Quat<_Tp>&) const;
/**
* @brief Subtraction assignment operator of two quaternions p and q.
* It subtracts right operand from the left operand and assign the result to left operand.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* p -= q; // equivalent to p = p - q
* std::cout << p << std::endl; //[-4, -4, -4, -4]
*
* ```
*/
Quat<_Tp>& operator-=(const Quat<_Tp>&);
/**
* @brief Multiplication assignment operator of two quaternions q and p.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of quaternion multiplication:
* \f[
* \begin{equation}
* \begin{split}
* p * q &= [p_0, \boldsymbol{u}]*[q_0, \boldsymbol{v}]\\
* &=[p_0q_0 - \boldsymbol{u}\cdot \boldsymbol{v}, p_0\boldsymbol{v} + q_0\boldsymbol{u}+ \boldsymbol{u}\times \boldsymbol{v}].
* \end{split}
* \end{equation}
* \f]
* where \f$\cdot\f$ means dot product and \f$\times \f$ means cross product.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* p *= q; // equivalent to p = p * q
* std::cout << p << std::endl; //[-60, 12, 30, 24]
* ```
*/
Quat<_Tp>& operator*=(const Quat<_Tp>&);
/**
* @brief Multiplication assignment operator of a quaternions and a scalar.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of quaternion multiplication with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p * s &= [w, x, y, z] * s\\
* &=[w * s, x * s, y * s, z * s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double s = 2.0;
* p *= s; // equivalent to p = p * s
* std::cout << p << std::endl; //[2.0, 4.0, 6.0, 8.0]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
Quat<_Tp>& operator*=(const _Tp s);
/**
* @brief Multiplication operator of two quaternions q and p.
* Multiplies values on either side of the operator.
*
* Rule of quaternion multiplication:
* \f[
* \begin{equation}
* \begin{split}
* p * q &= [p_0, \boldsymbol{u}]*[q_0, \boldsymbol{v}]\\
* &=[p_0q_0 - \boldsymbol{u}\cdot \boldsymbol{v}, p_0\boldsymbol{v} + q_0\boldsymbol{u}+ \boldsymbol{u}\times \boldsymbol{v}].
* \end{split}
* \end{equation}
* \f]
* where \f$\cdot\f$ means dot product and \f$\times \f$ means cross product.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* std::cout << p * q << std::endl; //[-60, 12, 30, 24]
* ```
*/
Quat<_Tp> operator*(const Quat<_Tp>&) const;
/**
* @brief Division operator of a quaternions and a scalar.
* It divides left operand with the right operand and assign the result to left operand.
*
* Rule of quaternion division with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p / s &= [w, x, y, z] / s\\
* &=[w/s, x/s, y/s, z/s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double s = 2.0;
* p /= s; // equivalent to p = p / s
* std::cout << p << std::endl; //[0.5, 1, 1.5, 2]
* ```
* @note the type of scalar should be equal to this quaternion.
*/
Quat<_Tp> operator/(const _Tp s) const;
/**
* @brief Division operator of two quaternions p and q.
* Divides left hand operand by right hand operand.
*
* Rule of quaternion division with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p / q &= p * q.inv()\\
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* std::cout << p / q << std::endl; // equivalent to p * q.inv()
* ```
*/
Quat<_Tp> operator/(const Quat<_Tp>&) const;
/**
* @brief Division assignment operator of a quaternions and a scalar.
* It divides left operand with the right operand and assign the result to left operand.
*
* Rule of quaternion division with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p / s &= [w, x, y, z] / s\\
* &=[w / s, x / s, y / s, z / s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double s = 2.0;;
* p /= s; // equivalent to p = p / s
* std::cout << p << std::endl; //[0.5, 1.0, 1.5, 2.0]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
Quat<_Tp>& operator/=(const _Tp s);
/**
* @brief Division assignment operator of two quaternions p and q;
* It divides left operand with the right operand and assign the result to left operand.
*
* Rule of quaternion division with a quaternion:
* \f[
* \begin{equation}
* \begin{split}
* p / q&= p * q.inv()\\
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* Quatd q{5, 6, 7, 8};
* p /= q; // equivalent to p = p * q.inv()
* std::cout << p << std::endl;
* ```
*/
Quat<_Tp>& operator/=(const Quat<_Tp>&);
_Tp& operator[](std::size_t n);
const _Tp& operator[](std::size_t n) const;
/**
* @brief Subtraction operator of a scalar and a quaternions.
* Subtracts right hand operand from left hand operand.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double scalar = 2.0;
* std::cout << scalar - p << std::endl; //[1.0, -2, -3, -4]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
template <typename T>
friend Quat<T> cv::operator-(const T s, const Quat<T>&);
/**
* @brief Subtraction operator of a quaternions and a scalar.
* Subtracts right hand operand from left hand operand.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double scalar = 2.0;
* std::cout << p - scalar << std::endl; //[-1.0, 2, 3, 4]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
template <typename T>
friend Quat<T> cv::operator-(const Quat<T>&, const T s);
/**
* @brief Addition operator of a quaternions and a scalar.
* Adds right hand operand from left hand operand.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double scalar = 2.0;
* std::cout << scalar + p << std::endl; //[3.0, 2, 3, 4]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
template <typename T>
friend Quat<T> cv::operator+(const T s, const Quat<T>&);
/**
* @brief Addition operator of a quaternions and a scalar.
* Adds right hand operand from left hand operand.
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double scalar = 2.0;
* std::cout << p + scalar << std::endl; //[3.0, 2, 3, 4]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
template <typename T>
friend Quat<T> cv::operator+(const Quat<T>&, const T s);
/**
* @brief Multiplication operator of a scalar and a quaternions.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of quaternion multiplication with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p * s &= [w, x, y, z] * s\\
* &=[w * s, x * s, y * s, z * s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double s = 2.0;
* std::cout << s * p << std::endl; //[2.0, 4.0, 6.0, 8.0]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
template <typename T>
friend Quat<T> cv::operator*(const T s, const Quat<T>&);
/**
* @brief Multiplication operator of a quaternion and a scalar.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of quaternion multiplication with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p * s &= [w, x, y, z] * s\\
* &=[w * s, x * s, y * s, z * s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* Quatd p{1, 2, 3, 4};
* double s = 2.0;
* std::cout << p * s << std::endl; //[2.0, 4.0, 6.0, 8.0]
* ```
* @note the type of scalar should be equal to the quaternion.
*/
template <typename T>
friend Quat<T> cv::operator*(const Quat<T>&, const T s);
template <typename S>
friend std::ostream& cv::operator<<(std::ostream&, const Quat<S>&);
/**
* @brief Transform a quaternion q to Euler angles.
*
*
* When transforming a quaternion \f$q = w + x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}\f$ to Euler angles, rotation matrix M can be calculated by:
* \f[ \begin{aligned} {M} &={\begin{bmatrix}1-2(y^{2}+z^{2})&2(xy-zx)&2(xz+yw)\\2(xy+zw)&1-2(x^{2}+z^{2})&2(yz-xw)\\2(xz-yw)&2(yz+xw)&1-2(x^{2}+y^{2})\end{bmatrix}}\end{aligned}.\f]
* On the other hand, the rotation matrix can be obtained from Euler angles.
* Using intrinsic rotations with Euler angles type XYZ as an example,
* \f$\theta_1 \f$, \f$\theta_2 \f$, \f$\theta_3 \f$ are three angles for Euler angles, the rotation matrix R can be calculated by:\f[R =X(\theta_1)Y(\theta_2)Z(\theta_3)
* ={\begin{bmatrix}\cos\theta_{2}\cos\theta_{3}&-\cos\theta_{2}\sin\theta_{3}&\sin\theta_{2}\\\cos\theta_{1}\sin\theta_{3}+\cos\theta_{3}\sin\theta_{1}\sin\theta_{2}&\cos\theta_{1}\cos\theta_{3}-\sin\theta_{1}\sin\theta_{2}\sin\theta_{3}&-\cos\theta_{2}\sin\theta_{1}\\\sin\theta_{1}\sin\theta_{3}-\cos\theta_{1}\cos\theta_{3}\sin\theta_{2}&\cos\theta_{3}\sin\theta_{1}+\cos\theta_{1}\sin\theta_{2}\sin\theta_{3}&\cos\theta_{1}\cos_{2}\end{bmatrix}}\f]
* Rotation matrix M and R are equal. As long as \f$ s_{2} \neq 1 \f$, by comparing each element of two matrices ,the solution is\f$\begin{cases} \theta_1 = \arctan2(-m_{23},m_{33})\\\theta_2 = arcsin(m_{13}) \\\theta_3 = \arctan2(-m_{12},m_{11}) \end{cases}\f$.
*
* When \f$ s_{2}=1\f$ or \f$ s_{2}=-1\f$, the gimbal lock occurs. The function will prompt "WARNING: Gimbal Lock will occur. Euler angles is non-unique. For intrinsic rotations, we set the third angle to 0, and for external rotation, we set the first angle to 0.".
*
* When \f$ s_{2}=1\f$ ,
* The rotation matrix R is \f$R = {\begin{bmatrix}0&0&1\\\sin(\theta_1+\theta_3)&\cos(\theta_1+\theta_3)&0\\-\cos(\theta_1+\theta_3)&\sin(\theta_1+\theta_3)&0\end{bmatrix}}\f$.
*
* The number of solutions is infinite with the condition \f$\begin{cases} \theta_1+\theta_3 = \arctan2(m_{21},m_{22})\\ \theta_2=\pi/2 \end{cases}\ \f$.
*
* We set \f$ \theta_3 = 0\f$, the solution is \f$\begin{cases} \theta_1=\arctan2(m_{21},m_{22})\\ \theta_2=\pi/2\\ \theta_3=0 \end{cases}\f$.
*
* When \f$ s_{2}=-1\f$,
* The rotation matrix R is \f$X_{1}Y_{2}Z_{3}={\begin{bmatrix}0&0&-1\\-\sin(\theta_1-\theta_3)&\cos(\theta_1-\theta_3)&0\\\cos(\theta_1-\theta_3)&\sin(\theta_1-\theta_3)&0\end{bmatrix}}\f$.
*
* The number of solutions is infinite with the condition \f$\begin{cases} \theta_1+\theta_3 = \arctan2(m_{32},m_{22})\\ \theta_2=\pi/2 \end{cases}\ \f$.
*
* We set \f$ \theta_3 = 0\f$, the solution is \f$ \begin{cases}\theta_1=\arctan2(m_{32},m_{22}) \\ \theta_2=-\pi/2\\ \theta_3=0\end{cases}\f$.
*
* Since \f$ sin \theta\in [-1,1] \f$ and \f$ cos \theta \in [-1,1] \f$, the unnormalized quaternion will cause computational troubles. For this reason, this function will normalize the quaternion at first and @ref QuatAssumeType is not needed.
*
* When the gimbal lock occurs, we set \f$\theta_3 = 0\f$ for intrinsic rotations or \f$\theta_1 = 0\f$ for extrinsic rotations.
*
* As a result, for every Euler angles type, we can get solution as shown in the following table.
* EulerAnglesType | Ordinary | \f$\theta_2 = π/2\f$ | \f$\theta_2 = -π/2\f$
* ------------- | -------------| -------------| -------------
* INT_XYZ|\f$ \theta_1 = \arctan2(-m_{23},m_{33})\\\theta_2 = \arcsin(m_{13}) \\\theta_3= \arctan2(-m_{12},m_{11}) \f$|\f$ \theta_1=\arctan2(m_{21},m_{22})\\ \theta_2=\pi/2\\ \theta_3=0 \f$|\f$ \theta_1=\arctan2(m_{32},m_{22})\\ \theta_2=-\pi/2\\ \theta_3=0 \f$
* INT_XZY|\f$ \theta_1 = \arctan2(m_{32},m_{22})\\\theta_2 = -\arcsin(m_{12}) \\\theta_3= \arctan2(m_{13},m_{11}) \f$|\f$ \theta_1=\arctan2(m_{31},m_{33})\\ \theta_2=\pi/2\\ \theta_3=0 \f$|\f$ \theta_1=\arctan2(-m_{23},m_{33})\\ \theta_2=-\pi/2\\ \theta_3=0 \f$
* INT_YXZ|\f$ \theta_1 = \arctan2(m_{13},m_{33})\\\theta_2 = -\arcsin(m_{23}) \\\theta_3= \arctan2(m_{21},m_{22}) \f$|\f$ \theta_1=\arctan2(m_{12},m_{11})\\ \theta_2=\pi/2\\ \theta_3=0 \f$|\f$ \theta_1=\arctan2(-m_{12},m_{11})\\ \theta_2=-\pi/2\\ \theta_3=0 \f$
* INT_YZX|\f$ \theta_1 = \arctan2(-m_{31},m_{11})\\\theta_2 = \arcsin(m_{21}) \\\theta_3= \arctan2(-m_{23},m_{22}) \f$|\f$ \theta_1=\arctan2(m_{13},m_{33})\\ \theta_2=\pi/2\\ \theta_3=0 \f$|\f$ \theta_1=\arctan2(m_{13},m_{12})\\ \theta_2=-\pi/2\\ \theta_3=0 \f$
* INT_ZXY|\f$ \theta_1 = \arctan2(-m_{12},m_{22})\\\theta_2 = \arcsin(m_{32}) \\\theta_3= \arctan2(-m_{31},m_{33}) \f$|\f$ \theta_1=\arctan2(m_{21},m_{11})\\ \theta_2=\pi/2\\ \theta_3=0 \f$|\f$ \theta_1=\arctan2(m_{21},m_{11})\\ \theta_2=-\pi/2\\ \theta_3=0 \f$
* INT_ZYX|\f$ \theta_1 = \arctan2(m_{21},m_{11})\\\theta_2 = \arcsin(-m_{31}) \\\theta_3= \arctan2(m_{32},m_{33}) \f$|\f$ \theta_1=\arctan2(m_{23},m_{22})\\ \theta_2=\pi/2\\ \theta_3=0 \f$|\f$ \theta_1=\arctan2(-m_{12},m_{22})\\ \theta_2=-\pi/2\\ \theta_3=0 \f$
* EXT_XYZ|\f$ \theta_1 = \arctan2(m_{32},m_{33})\\\theta_2 = \arcsin(-m_{31}) \\\ \theta_3 = \arctan2(m_{21},m_{11})\f$|\f$ \theta_1= 0\\ \theta_2=\pi/2\\ \theta_3=\arctan2(m_{23},m_{22}) \f$|\f$ \theta_1=0\\ \theta_2=-\pi/2\\ \theta_3=\arctan2(-m_{12},m_{22}) \f$
* EXT_XZY|\f$ \theta_1 = \arctan2(-m_{23},m_{22})\\\theta_2 = \arcsin(m_{21}) \\\theta_3= \arctan2(-m_{31},m_{11})\f$|\f$ \theta_1= 0\\ \theta_2=\pi/2\\ \theta_3=\arctan2(m_{13},m_{33}) \f$|\f$ \theta_1=0\\ \theta_2=-\pi/2\\ \theta_3=\arctan2(m_{13},m_{12}) \f$
* EXT_YXZ|\f$ \theta_1 = \arctan2(-m_{31},m_{33}) \\\theta_2 = \arcsin(m_{32}) \\\theta_3= \arctan2(-m_{12},m_{22})\f$|\f$ \theta_1= 0\\ \theta_2=\pi/2\\ \theta_3=\arctan2(m_{21},m_{11}) \f$|\f$ \theta_1=0\\ \theta_2=-\pi/2\\ \theta_3=\arctan2(m_{21},m_{11}) \f$
* EXT_YZX|\f$ \theta_1 = \arctan2(m_{13},m_{11})\\\theta_2 = -\arcsin(m_{12}) \\\theta_3= \arctan2(m_{32},m_{22})\f$|\f$ \theta_1= 0\\ \theta_2=\pi/2\\ \theta_3=\arctan2(m_{31},m_{33}) \f$|\f$ \theta_1=0\\ \theta_2=-\pi/2\\ \theta_3=\arctan2(-m_{23},m_{33}) \f$
* EXT_ZXY|\f$ \theta_1 = \arctan2(m_{21},m_{22})\\\theta_2 = -\arcsin(m_{23}) \\\theta_3= \arctan2(m_{13},m_{33})\f$|\f$ \theta_1= 0\\ \theta_2=\pi/2\\ \theta_3=\arctan2(m_{12},m_{11}) \f$|\f$ \theta_1= 0\\ \theta_2=-\pi/2\\ \theta_3=\arctan2(-m_{12},m_{11}) \f$
* EXT_ZYX|\f$ \theta_1 = \arctan2(-m_{12},m_{11})\\\theta_2 = \arcsin(m_{13}) \\\theta_3= \arctan2(-m_{23},m_{33})\f$|\f$ \theta_1=0\\ \theta_2=\pi/2\\ \theta_3=\arctan2(m_{21},m_{22}) \f$|\f$ \theta_1=0\\ \theta_2=-\pi/2\\ \theta_3=\arctan2(m_{32},m_{22}) \f$
*
* EulerAnglesType | Ordinary | \f$\theta_2 = 0\f$ | \f$\theta_2 = π\f$
* ------------- | -------------| -------------| -------------
* INT_XYX| \f$ \theta_1 = \arctan2(m_{21},-m_{31})\\\theta_2 =\arccos(m_{11}) \\\theta_3 = \arctan2(m_{12},m_{13}) \f$| \f$ \theta_1=\arctan2(m_{32},m_{33})\\ \theta_2=0\\ \theta_3=0 \f$| \f$ \theta_1=\arctan2(m_{23},m_{22})\\ \theta_2=\pi\\ \theta_3=0 \f$
* INT_XZX| \f$ \theta_1 = \arctan2(m_{31},m_{21})\\\theta_2 = \arccos(m_{11}) \\\theta_3 = \arctan2(m_{13},-m_{12}) \f$| \f$ \theta_1=\arctan2(m_{32},m_{33})\\ \theta_2=0\\ \theta_3=0 \f$| \f$ \theta_1=\arctan2(-m_{32},m_{33})\\ \theta_2=\pi\\ \theta_3=0 \f$
* INT_YXY| \f$ \theta_1 = \arctan2(m_{12},m_{32})\\\theta_2 = \arccos(m_{22}) \\\theta_3 = \arctan2(m_{21},-m_{23}) \f$| \f$ \theta_1=\arctan2(m_{13},m_{11})\\ \theta_2=0\\ \theta_3=0 \f$| \f$ \theta_1=\arctan2(-m_{31},m_{11})\\ \theta_2=\pi\\ \theta_3=0 \f$
* INT_YZY| \f$ \theta_1 = \arctan2(m_{32},-m_{12})\\\theta_2 = \arccos(m_{22}) \\\theta_3 =\arctan2(m_{23},m_{21}) \f$| \f$ \theta_1=\arctan2(m_{13},m_{11})\\ \theta_2=0\\ \theta_3=0 \f$| \f$ \theta_1=\arctan2(m_{13},-m_{11})\\ \theta_2=\pi\\ \theta_3=0 \f$
* INT_ZXZ| \f$ \theta_1 = \arctan2(-m_{13},m_{23})\\\theta_2 = \arccos(m_{33}) \\\theta_3 =\arctan2(m_{31},m_{32}) \f$| \f$ \theta_1=\arctan2(m_{21},m_{22})\\ \theta_2=0\\ \theta_3=0 \f$| \f$ \theta_1=\arctan2(m_{21},m_{11})\\ \theta_2=\pi\\ \theta_3=0 \f$
* INT_ZYZ| \f$ \theta_1 = \arctan2(m_{23},m_{13})\\\theta_2 = \arccos(m_{33}) \\\theta_3 = \arctan2(m_{32},-m_{31}) \f$| \f$ \theta_1=\arctan2(m_{21},m_{11})\\ \theta_2=0\\ \theta_3=0 \f$| \f$ \theta_1=\arctan2(m_{21},m_{11})\\ \theta_2=\pi\\ \theta_3=0 \f$
* EXT_XYX| \f$ \theta_1 = \arctan2(m_{12},m_{13}) \\\theta_2 = \arccos(m_{11}) \\\theta_3 = \arctan2(m_{21},-m_{31})\f$| \f$ \theta_1=0\\ \theta_2=0\\ \theta_3=\arctan2(m_{32},m_{33}) \f$| \f$ \theta_1= 0\\ \theta_2=\pi\\ \theta_3= \arctan2(m_{23},m_{22}) \f$
* EXT_XZX| \f$ \theta_1 = \arctan2(m_{13},-m_{12})\\\theta_2 = \arccos(m_{11}) \\\theta_3 = \arctan2(m_{31},m_{21})\f$| \f$ \theta_1= 0\\ \theta_2=0\\ \theta_3=\arctan2(m_{32},m_{33}) \f$| \f$ \theta_1= 0\\ \theta_2=\pi\\ \theta_3=\arctan2(-m_{32},m_{33}) \f$
* EXT_YXY| \f$ \theta_1 = \arctan2(m_{21},-m_{23})\\\theta_2 = \arccos(m_{22}) \\\theta_3 = \arctan2(m_{12},m_{32}) \f$| \f$ \theta_1= 0\\ \theta_2=0\\ \theta_3=\arctan2(m_{13},m_{11}) \f$| \f$ \theta_1= 0\\ \theta_2=\pi\\ \theta_3=\arctan2(-m_{31},m_{11}) \f$
* EXT_YZY| \f$ \theta_1 = \arctan2(m_{23},m_{21}) \\\theta_2 = \arccos(m_{22}) \\\theta_3 = \arctan2(m_{32},-m_{12}) \f$| \f$ \theta_1= 0\\ \theta_2=0\\ \theta_3=\arctan2(m_{13},m_{11}) \f$| \f$ \theta_1=0\\ \theta_2=\pi\\ \theta_3=\arctan2(m_{13},-m_{11}) \f$
* EXT_ZXZ| \f$ \theta_1 = \arctan2(m_{31},m_{32}) \\\theta_2 = \arccos(m_{33}) \\\theta_3 = \arctan2(-m_{13},m_{23})\f$| \f$ \theta_1=0\\ \theta_2=0\\ \theta_3=\arctan2(m_{21},m_{22}) \f$| \f$ \theta_1= 0\\ \theta_2=\pi\\ \theta_3=\arctan2(m_{21},m_{11}) \f$
* EXT_ZYZ| \f$ \theta_1 = \arctan2(m_{32},-m_{31})\\\theta_2 = \arccos(m_{33}) \\\theta_3 = \arctan2(m_{23},m_{13}) \f$| \f$ \theta_1=0\\ \theta_2=0\\ \theta_3=\arctan2(m_{21},m_{11}) \f$| \f$ \theta_1= 0\\ \theta_2=\pi\\ \theta_3=\arctan2(m_{21},m_{11}) \f$
*
* @param eulerAnglesType the convertion Euler angles type
*/
Vec<_Tp, 3> toEulerAngles(QuatEnum::EulerAnglesType eulerAnglesType);
_Tp w, x, y, z;
};
template <typename T>
Quat<T> inv(const Quat<T> &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
template <typename T>
Quat<T> sinh(const Quat<T> &q);
template <typename T>
Quat<T> cosh(const Quat<T> &q);
template <typename T>
Quat<T> tanh(const Quat<T> &q);
template <typename T>
Quat<T> sin(const Quat<T> &q);
template <typename T>
Quat<T> cos(const Quat<T> &q);
template <typename T>
Quat<T> tan(const Quat<T> &q);
template <typename T>
Quat<T> asinh(const Quat<T> &q);
template <typename T>
Quat<T> acosh(const Quat<T> &q);
template <typename T>
Quat<T> atanh(const Quat<T> &q);
template <typename T>
Quat<T> asin(const Quat<T> &q);
template <typename T>
Quat<T> acos(const Quat<T> &q);
template <typename T>
Quat<T> atan(const Quat<T> &q);
template <typename T>
Quat<T> power(const Quat<T> &q, const Quat<T> &p, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
template <typename T>
Quat<T> exp(const Quat<T> &q);
template <typename T>
Quat<T> log(const Quat<T> &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
template <typename T>
Quat<T> power(const Quat<T>& q, const T x, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
template <typename T>
Quat<T> crossProduct(const Quat<T> &p, const Quat<T> &q);
template <typename S>
Quat<S> sqrt(const Quat<S> &q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
template <typename T>
Quat<T> operator*(const T, const Quat<T>&);
template <typename T>
Quat<T> operator*(const Quat<T>&, const T);
template <typename S>
std::ostream& operator<<(std::ostream&, const Quat<S>&);
using Quatd = Quat<double>;
using Quatf = Quat<float>;
//! @} core
}
#include "opencv2/core/quaternion.inl.hpp"
#endif /* OPENCV_CORE_QUATERNION_HPP */