dualquaternion.hpp
36.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved.
// Third party copyrights are property of their respective owners.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: Liangqian Kong <kongliangqian@huawei.com>
// Longbu Wang <wanglongbu@huawei.com>
#ifndef OPENCV_CORE_DUALQUATERNION_HPP
#define OPENCV_CORE_DUALQUATERNION_HPP
#include <opencv2/core/quaternion.hpp>
#include <opencv2/core/affine.hpp>
namespace cv{
//! @addtogroup core
//! @{
template <typename _Tp> class DualQuat;
template <typename _Tp> std::ostream& operator<<(std::ostream&, const DualQuat<_Tp>&);
/**
* Dual quaternions were introduced to describe rotation together with translation while ordinary
* quaternions can only describe rotation. It can be used for shortest path pose interpolation,
* local pose optimization or volumetric deformation. More details can be found
* - https://en.wikipedia.org/wiki/Dual_quaternion
* - ["A beginners guide to dual-quaternions: what they are, how they work, and how to use them for 3D character hierarchies", Ben Kenwright, 2012](https://borodust.org/public/shared/beginner_dual_quats.pdf)
* - ["Dual Quaternions", Yan-Bin Jia, 2013](http://web.cs.iastate.edu/~cs577/handouts/dual-quaternion.pdf)
* - ["Geometric Skinning with Approximate Dual Quaternion Blending", Kavan, 2008](https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric)
* - http://rodolphe-vaillant.fr/?e=29
*
* A unit dual quaternion can be classically represented as:
* \f[
* \begin{equation}
* \begin{split}
* \sigma &= \left(r+\frac{\epsilon}{2}tr\right)\\
* &= [w, x, y, z, w\_, x\_, y\_, z\_]
* \end{split}
* \end{equation}
* \f]
* where \f$r, t\f$ represents the rotation (ordinary unit quaternion) and translation (pure ordinary quaternion) respectively.
*
* A general dual quaternions which consist of two quaternions is usually represented in form of:
* \f[
* \sigma = p + \epsilon q
* \f]
* where the introduced dual unit \f$\epsilon\f$ satisfies \f$\epsilon^2 = \epsilon^3 =...=0\f$, and \f$p, q\f$ are quaternions.
*
* Alternatively, dual quaternions can also be interpreted as four components which are all [dual numbers](https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric):
* \f[
* \sigma = \hat{q}_w + \hat{q}_xi + \hat{q}_yj + \hat{q}_zk
* \f]
* If we set \f$\hat{q}_x, \hat{q}_y\f$ and \f$\hat{q}_z\f$ equal to 0, a dual quaternion is transformed to a dual number. see normalize().
*
* If you want to create a dual quaternion, you can use:
*
* ```
* using namespace cv;
* double angle = CV_PI;
*
* // create from eight number
* DualQuatd dq1(1, 2, 3, 4, 5, 6, 7, 8); //p = [1,2,3,4]. q=[5,6,7,8]
*
* // create from Vec
* Vec<double, 8> v{1,2,3,4,5,6,7,8};
* DualQuatd dq_v{v};
*
* // create from two quaternion
* Quatd p(1, 2, 3, 4);
* Quatd q(5, 6, 7, 8);
* DualQuatd dq2 = DualQuatd::createFromQuat(p, q);
*
* // create from an angle, an axis and a translation
* Vec3d axis{0, 0, 1};
* Vec3d trans{3, 4, 5};
* DualQuatd dq3 = DualQuatd::createFromAngleAxisTrans(angle, axis, trans);
*
* // If you already have an instance of class Affine3, then you can use
* Affine3d R = dq3.toAffine3();
* DualQuatd dq4 = DualQuatd::createFromAffine3(R);
*
* // or create directly by affine transformation matrix Rt
* // see createFromMat() in detail for the form of Rt
* Matx44d Rt = dq3.toMat();
* DualQuatd dq5 = DualQuatd::createFromMat(Rt);
*
* // Any rotation + translation movement can
* // be expressed as a rotation + translation around the same line in space (expressed by Plucker
* // coords), and here's a way to represent it this way.
* Vec3d axis{1, 1, 1}; // axis will be normalized in createFromPitch
* Vec3d trans{3, 4 ,5};
* axis = axis / std::sqrt(axis.dot(axis));// The formula for computing moment that I use below requires a normalized axis
* Vec3d moment = 1.0 / 2 * (trans.cross(axis) + axis.cross(trans.cross(axis)) *
* std::cos(rotation_angle / 2) / std::sin(rotation_angle / 2));
* double d = trans.dot(qaxis);
* DualQuatd dq6 = DualQuatd::createFromPitch(angle, d, axis, moment);
* ```
*
* A point \f$v=(x, y, z)\f$ in form of dual quaternion is \f$[1+\epsilon v]=[1,0,0,0,0,x,y,z]\f$.
* The transformation of a point \f$v_1\f$ to another point \f$v_2\f$ under the dual quaternion \f$\sigma\f$ is
* \f[
* 1 + \epsilon v_2 = \sigma * (1 + \epsilon v_1) * \sigma^{\star}
* \f]
* where \f$\sigma^{\star}=p^*-\epsilon q^*.\f$
*
* A line in the \f$Pl\ddot{u}cker\f$ coordinates \f$(\hat{l}, m)\f$ defined by the dual quaternion \f$l=\hat{l}+\epsilon m\f$.
* To transform a line, \f[l_2 = \sigma * l_1 * \sigma^*,\f] where \f$\sigma=r+\frac{\epsilon}{2}rt\f$ and
* \f$\sigma^*=p^*+\epsilon q^*\f$.
*
* To extract the Vec<double, 8> or Vec<float, 8>, see toVec();
*
* To extract the affine transformation matrix, see toMat();
*
* To extract the instance of Affine3, see toAffine3();
*
* If two quaternions \f$q_0, q_1\f$ are needed to be interpolated, you can use sclerp()
* ```
* DualQuatd::sclerp(q0, q1, t)
* ```
* or dqblend().
* ```
* DualQuatd::dqblend(q0, q1, t)
* ```
* With more than two dual quaternions to be blended, you can use generalize linear dual quaternion blending
* with the corresponding weights, i.e. gdqblend().
*
*/
template <typename _Tp>
class CV_EXPORTS DualQuat{
static_assert(std::is_floating_point<_Tp>::value, "Dual quaternion only make sense with type of float or double");
using value_type = _Tp;
public:
static constexpr _Tp CV_DUAL_QUAT_EPS = (_Tp)1.e-6;
DualQuat();
/**
* @brief create from eight same type numbers.
*/
DualQuat(const _Tp w, const _Tp x, const _Tp y, const _Tp z, const _Tp w_, const _Tp x_, const _Tp y_, const _Tp z_);
/**
* @brief create from a double or float vector.
*/
DualQuat(const Vec<_Tp, 8> &q);
_Tp w, x, y, z, w_, x_, y_, z_;
/**
* @brief create Dual Quaternion from two same type quaternions p and q.
* A Dual Quaternion \f$\sigma\f$ has the form:
* \f[\sigma = p + \epsilon q\f]
* where p and q are defined as follows:
* \f[\begin{equation}
* \begin{split}
* p &= w + x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}\\
* q &= w\_ + x\_\boldsymbol{i} + y\_\boldsymbol{j} + z\_\boldsymbol{k}.
* \end{split}
* \end{equation}
* \f]
* The p and q are the real part and dual part respectively.
* @param realPart a quaternion, real part of dual quaternion.
* @param dualPart a quaternion, dual part of dual quaternion.
* @sa Quat
*/
static DualQuat<_Tp> createFromQuat(const Quat<_Tp> &realPart, const Quat<_Tp> &dualPart);
/**
* @brief create a dual quaternion from a rotation angle \f$\theta\f$, a rotation axis
* \f$\boldsymbol{u}\f$ and a translation \f$\boldsymbol{t}\f$.
* It generates a dual quaternion \f$\sigma\f$ in the form of
* \f[\begin{equation}
* \begin{split}
* \sigma &= r + \frac{\epsilon}{2}\boldsymbol{t}r \\
* &= [\cos(\frac{\theta}{2}), \boldsymbol{u}\sin(\frac{\theta}{2})]
* + \frac{\epsilon}{2}[0, \boldsymbol{t}][[\cos(\frac{\theta}{2}),
* \boldsymbol{u}\sin(\frac{\theta}{2})]]\\
* &= \cos(\frac{\theta}{2}) + \boldsymbol{u}\sin(\frac{\theta}{2})
* + \frac{\epsilon}{2}(-(\boldsymbol{t} \cdot \boldsymbol{u})\sin(\frac{\theta}{2})
* + \boldsymbol{t}\cos(\frac{\theta}{2}) + \boldsymbol{u} \times \boldsymbol{t} \sin(\frac{\theta}{2})).
* \end{split}
* \end{equation}\f]
* @param angle rotation angle.
* @param axis rotation axis.
* @param translation a vector of length 3.
* @note Axis will be normalized in this function. And translation is applied
* after the rotation. Use @ref createFromQuat(r, r * t / 2) to create a dual quaternion
* which translation is applied before rotation.
* @sa Quat
*/
static DualQuat<_Tp> createFromAngleAxisTrans(const _Tp angle, const Vec<_Tp, 3> &axis, const Vec<_Tp, 3> &translation);
/**
* @brief Transform this dual quaternion to an affine transformation matrix \f$M\f$.
* Dual quaternion consists of a rotation \f$r=[a,b,c,d]\f$ and a translation \f$t=[\Delta x,\Delta y,\Delta z]\f$. The
* affine transformation matrix \f$M\f$ has the form
* \f[
* \begin{bmatrix}
* 1-2(e_2^2 +e_3^2) &2(e_1e_2-e_0e_3) &2(e_0e_2+e_1e_3) &\Delta x\\
* 2(e_0e_3+e_1e_2) &1-2(e_1^2+e_3^2) &2(e_2e_3-e_0e_1) &\Delta y\\
* 2(e_1e_3-e_0e_2) &2(e_0e_1+e_2e_3) &1-2(e_1^2-e_2^2) &\Delta z\\
* 0&0&0&1
* \end{bmatrix}
* \f]
* if A is a matrix consisting of n points to be transformed, this could be achieved by
* \f[
* new\_A = M * A
* \f]
* where A has the form
* \f[
* \begin{bmatrix}
* x_0& x_1& x_2&...&x_n\\
* y_0& y_1& y_2&...&y_n\\
* z_0& z_1& z_2&...&z_n\\
* 1&1&1&...&1
* \end{bmatrix}
* \f]
* where the same subscript represent the same point. The size of A should be \f$[4,n]\f$.
* and the same size for matrix new_A.
* @param _R 4x4 matrix that represents rotations and translation.
* @note Translation is applied after the rotation. Use createFromQuat(r, r * t / 2) to create
* a dual quaternion which translation is applied before rotation.
*/
static DualQuat<_Tp> createFromMat(InputArray _R);
/**
* @brief create dual quaternion from an affine matrix. The definition of affine matrix can refer to createFromMat()
*/
static DualQuat<_Tp> createFromAffine3(const Affine3<_Tp> &R);
/**
* @brief A dual quaternion is a vector in form of
* \f[
* \begin{equation}
* \begin{split}
* \sigma &=\boldsymbol{p} + \epsilon \boldsymbol{q}\\
* &= \cos\hat{\frac{\theta}{2}}+\overline{\hat{l}}\sin\frac{\hat{\theta}}{2}
* \end{split}
* \end{equation}
* \f]
* where \f$\hat{\theta}\f$ is dual angle and \f$\overline{\hat{l}}\f$ is dual axis:
* \f[
* \hat{\theta}=\theta + \epsilon d,\\
* \overline{\hat{l}}= \hat{l} +\epsilon m.
* \f]
* In this representation, \f$\theta\f$ is rotation angle and \f$(\hat{l},m)\f$ is the screw axis, d is the translation distance along the axis.
*
* @param angle rotation angle.
* @param d translation along the rotation axis.
* @param axis rotation axis represented by quaternion with w = 0.
* @param moment the moment of line, and it should be orthogonal to axis.
* @note Translation is applied after the rotation. Use createFromQuat(r, r * t / 2) to create
* a dual quaternion which translation is applied before rotation.
*/
static DualQuat<_Tp> createFromPitch(const _Tp angle, const _Tp d, const Vec<_Tp, 3> &axis, const Vec<_Tp, 3> &moment);
/**
* @brief return a quaternion which represent the real part of dual quaternion.
* The definition of real part is in createFromQuat().
* @sa createFromQuat, getDualPart
*/
Quat<_Tp> getRealPart() const;
/**
* @brief return a quaternion which represent the dual part of dual quaternion.
* The definition of dual part is in createFromQuat().
* @sa createFromQuat, getRealPart
*/
Quat<_Tp> getDualPart() const;
/**
* @brief return the conjugate of a dual quaternion.
* \f[
* \begin{equation}
* \begin{split}
* \sigma^* &= (p + \epsilon q)^*
* &= (p^* + \epsilon q^*)
* \end{split}
* \end{equation}
* \f]
* @param dq a dual quaternion.
*/
template <typename T>
friend DualQuat<T> conjugate(const DualQuat<T> &dq);
/**
* @brief return the conjugate of a dual quaternion.
* \f[
* \begin{equation}
* \begin{split}
* \sigma^* &= (p + \epsilon q)^*
* &= (p^* + \epsilon q^*)
* \end{split}
* \end{equation}
* \f]
*/
DualQuat<_Tp> conjugate() const;
/**
* @brief return the rotation in quaternion form.
*/
Quat<_Tp> getRotation(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the translation vector.
* The rotation \f$r\f$ in this dual quaternion \f$\sigma\f$ is applied before translation \f$t\f$.
* The dual quaternion \f$\sigma\f$ is defined as
* \f[\begin{equation}
* \begin{split}
* \sigma &= p + \epsilon q \\
* &= r + \frac{\epsilon}{2}{t}r.
* \end{split}
* \end{equation}\f]
* Thus, the translation can be obtained as follows
* \f[t = 2qp^*.\f]
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
* and this function will save some computations.
* @note This dual quaternion's translation is applied after the rotation.
*/
Vec<_Tp, 3> getTranslation(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the norm \f$||\sigma||\f$ of dual quaternion \f$\sigma = p + \epsilon q\f$.
* \f[
* \begin{equation}
* \begin{split}
* ||\sigma|| &= \sqrt{\sigma * \sigma^*} \\
* &= ||p|| + \epsilon \frac{p \cdot q}{||p||}.
* \end{split}
* \end{equation}
* \f]
* Generally speaking, the norm of a not unit dual
* quaternion is a dual number. For convenience, we return it in the form of a dual quaternion
* , i.e.
* \f[ ||\sigma|| = [||p||, 0, 0, 0, \frac{p \cdot q}{||p||}, 0, 0, 0].\f]
*
* @note The data type of dual number is dual quaternion.
*/
DualQuat<_Tp> norm() const;
/**
* @brief return a normalized dual quaternion.
* A dual quaternion can be expressed as
* \f[
* \begin{equation}
* \begin{split}
* \sigma &= p + \epsilon q\\
* &=||\sigma||\left(r+\frac{1}{2}tr\right)
* \end{split}
* \end{equation}
* \f]
* where \f$r, t\f$ represents the rotation (ordinary quaternion) and translation (pure ordinary quaternion) respectively,
* and \f$||\sigma||\f$ is the norm of dual quaternion(a dual number).
* A dual quaternion is unit if and only if
* \f[
* ||p||=1, p \cdot q=0
* \f]
* where \f$\cdot\f$ means dot product.
* The process of normalization is
* \f[
* \sigma_{u}=\frac{\sigma}{||\sigma||}
* \f]
* Next, we simply proof \f$\sigma_u\f$ is a unit dual quaternion:
* \f[
* \renewcommand{\Im}{\operatorname{Im}}
* \begin{equation}
* \begin{split}
* \sigma_{u}=\frac{\sigma}{||\sigma||}&=\frac{p + \epsilon q}{||p||+\epsilon\frac{p\cdot q}{||p||}}\\
* &=\frac{p}{||p||}+\epsilon\left(\frac{q}{||p||}-p\frac{p\cdot q}{||p||^3}\right)\\
* &=\frac{p}{||p||}+\epsilon\frac{1}{||p||^2}\left(qp^{*}-p\cdot q\right)\frac{p}{||p||}\\
* &=\frac{p}{||p||}+\epsilon\frac{1}{||p||^2}\Im(qp^*)\frac{p}{||p||}.\\
* \end{split}
* \end{equation}
* \f]
* As expected, the real part is a rotation and dual part is a pure quaternion.
*/
DualQuat<_Tp> normalize() const;
/**
* @brief if \f$\sigma = p + \epsilon q\f$ is a dual quaternion, p is not zero,
* the inverse dual quaternion is
* \f[\sigma^{-1} = \frac{\sigma^*}{||\sigma||^2}, \f]
* or equivalentlly,
* \f[\sigma^{-1} = p^{-1} - \epsilon p^{-1}qp^{-1}.\f]
* @param dq a dual quaternion.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion
* and this function will save some computations.
*/
template <typename T>
friend DualQuat<T> inv(const DualQuat<T> &dq, QuatAssumeType assumeUnit);
/**
* @brief if \f$\sigma = p + \epsilon q\f$ is a dual quaternion, p is not zero,
* the inverse dual quaternion is
* \f[\sigma^{-1} = \frac{\sigma^*}{||\sigma||^2}, \f]
* or equivalentlly,
* \f[\sigma^{-1} = p^{-1} - \epsilon p^{-1}qp^{-1}.\f]
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
* and this function will save some computations.
*/
DualQuat<_Tp> inv(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the dot product of two dual quaternion.
* @param p other dual quaternion.
*/
_Tp dot(DualQuat<_Tp> p) const;
/**
** @brief return the value of \f$p^t\f$ where p is a dual quaternion.
* This could be calculated as:
* \f[
* p^t = \exp(t\ln p)
* \f]
* @param dq a dual quaternion.
* @param t index of power function.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion
* and this function will save some computations.
*/
template <typename T>
friend DualQuat<T> power(const DualQuat<T> &dq, const T t, QuatAssumeType assumeUnit);
/**
** @brief return the value of \f$p^t\f$ where p is a dual quaternion.
* This could be calculated as:
* \f[
* p^t = \exp(t\ln p)
* \f]
*
* @param t index of power function.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
* and this function will save some computations.
*/
DualQuat<_Tp> power(const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the value of \f$p^q\f$ where p and q are dual quaternions.
* This could be calculated as:
* \f[
* p^q = \exp(q\ln p)
* \f]
* @param p a dual quaternion.
* @param q a dual quaternion.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion p assume to be a dual unit quaternion
* and this function will save some computations.
*/
template <typename T>
friend DualQuat<T> power(const DualQuat<T>& p, const DualQuat<T>& q, QuatAssumeType assumeUnit);
/**
* @brief return the value of \f$p^q\f$ where p and q are dual quaternions.
* This could be calculated as:
* \f[
* p^q = \exp(q\ln p)
* \f]
*
* @param q a dual quaternion
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a dual unit quaternion
* and this function will save some computations.
*/
DualQuat<_Tp> power(const DualQuat<_Tp>& q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief return the value of exponential function value
* @param dq a dual quaternion.
*/
template <typename T>
friend DualQuat<T> exp(const DualQuat<T> &dq);
/**
* @brief return the value of exponential function value
*/
DualQuat<_Tp> exp() const;
/**
* @brief return the value of logarithm function value
*
* @param dq a dual quaternion.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion
* and this function will save some computations.
*/
template <typename T>
friend DualQuat<T> log(const DualQuat<T> &dq, QuatAssumeType assumeUnit);
/**
* @brief return the value of logarithm function value
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
* and this function will save some computations.
*/
DualQuat<_Tp> log(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief Transform this dual quaternion to a vector.
*/
Vec<_Tp, 8> toVec() const;
/**
* @brief Transform this dual quaternion to a affine transformation matrix
* the form of matrix, see createFromMat().
*/
Matx<_Tp, 4, 4> toMat(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief Transform this dual quaternion to a instance of Affine3.
*/
Affine3<_Tp> toAffine3(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const;
/**
* @brief The screw linear interpolation(ScLERP) is an extension of spherical linear interpolation of dual quaternion.
* If \f$\sigma_1\f$ and \f$\sigma_2\f$ are two dual quaternions representing the initial and final pose.
* The interpolation of ScLERP function can be defined as:
* \f[
* ScLERP(t;\sigma_1,\sigma_2) = \sigma_1 * (\sigma_1^{-1} * \sigma_2)^t, t\in[0,1]
* \f]
*
* @param q1 a dual quaternion represents a initial pose.
* @param q2 a dual quaternion represents a final pose.
* @param t interpolation parameter
* @param directChange if true, it always return the shortest path.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
* and this function will save some computations.
*
* For example
* ```
* double angle1 = CV_PI / 2;
* Vec3d axis{0, 0, 1};
* Vec3d t(0, 0, 3);
* DualQuatd initial = DualQuatd::createFromAngleAxisTrans(angle1, axis, t);
* double angle2 = CV_PI;
* DualQuatd final = DualQuatd::createFromAngleAxisTrans(angle2, axis, t);
* DualQuatd inter = DualQuatd::sclerp(initial, final, 0.5);
* ```
*/
static DualQuat<_Tp> sclerp(const DualQuat<_Tp> &q1, const DualQuat<_Tp> &q2, const _Tp t,
bool directChange=true, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
/**
* @brief The method of Dual Quaternion linear Blending(DQB) is to compute a transformation between dual quaternion
* \f$q_1\f$ and \f$q_2\f$ and can be defined as:
* \f[
* DQB(t;{\boldsymbol{q}}_1,{\boldsymbol{q}}_2)=
* \frac{(1-t){\boldsymbol{q}}_1+t{\boldsymbol{q}}_2}{||(1-t){\boldsymbol{q}}_1+t{\boldsymbol{q}}_2||}.
* \f]
* where \f$q_1\f$ and \f$q_2\f$ are unit dual quaternions representing the input transformations.
* If you want to use DQB that works for more than two rigid transformations, see @ref gdqblend
*
* @param q1 a unit dual quaternion representing the input transformations.
* @param q2 a unit dual quaternion representing the input transformations.
* @param t parameter \f$t\in[0,1]\f$.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion
* and this function will save some computations.
*
* @sa gdqblend
*/
static DualQuat<_Tp> dqblend(const DualQuat<_Tp> &q1, const DualQuat<_Tp> &q2, const _Tp t,
QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
/**
* @brief The generalized Dual Quaternion linear Blending works for more than two rigid transformations.
* If these transformations are expressed as unit dual quaternions \f$q_1,...,q_n\f$ with convex weights
* \f$w = (w_1,...,w_n)\f$, the generalized DQB is simply
* \f[
* gDQB(\boldsymbol{w};{\boldsymbol{q}}_1,...,{\boldsymbol{q}}_n)=\frac{w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n}
* {||w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n||}.
* \f]
* @param dualquat vector of dual quaternions
* @param weights vector of weights, the size of weights should be the same as dualquat, and the weights should
* satisfy \f$\sum_0^n w_{i} = 1\f$ and \f$w_i>0\f$.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, these dual quaternions assume to be unit quaternions
* and this function will save some computations.
* @note the type of weights' element should be the same as the date type of dual quaternion inside the dualquat.
*/
template <int cn>
static DualQuat<_Tp> gdqblend(const Vec<DualQuat<_Tp>, cn> &dualquat, InputArray weights,
QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
/**
* @brief The generalized Dual Quaternion linear Blending works for more than two rigid transformations.
* If these transformations are expressed as unit dual quaternions \f$q_1,...,q_n\f$ with convex weights
* \f$w = (w_1,...,w_n)\f$, the generalized DQB is simply
* \f[
* gDQB(\boldsymbol{w};{\boldsymbol{q}}_1,...,{\boldsymbol{q}}_n)=\frac{w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n}
* {||w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n||}.
* \f]
* @param dualquat The dual quaternions which have 8 channels and 1 row or 1 col.
* @param weights vector of weights, the size of weights should be the same as dualquat, and the weights should
* satisfy \f$\sum_0^n w_{i} = 1\f$ and \f$w_i>0\f$.
* @param assumeUnit if @ref QUAT_ASSUME_UNIT, these dual quaternions assume to be unit quaternions
* and this function will save some computations.
* @note the type of weights' element should be the same as the date type of dual quaternion inside the dualquat.
*/
static DualQuat<_Tp> gdqblend(InputArray dualquat, InputArray weights,
QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT);
/**
* @brief Return opposite dual quaternion \f$-p\f$
* which satisfies \f$p + (-p) = 0.\f$
*
* For example
* ```
* DualQuatd q{1, 2, 3, 4, 5, 6, 7, 8};
* std::cout << -q << std::endl; // [-1, -2, -3, -4, -5, -6, -7, -8]
* ```
*/
DualQuat<_Tp> operator-() const;
/**
* @brief return true if two dual quaternions p and q are nearly equal, i.e. when the absolute
* value of each \f$p_i\f$ and \f$q_i\f$ is less than CV_DUAL_QUAT_EPS.
*/
bool operator==(const DualQuat<_Tp>&) const;
/**
* @brief Subtraction operator of two dual quaternions p and q.
* It returns a new dual quaternion that each value is the sum of \f$p_i\f$ and \f$-q_i\f$.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* std::cout << p - q << std::endl; //[-4, -4, -4, -4, 4, -4, -4, -4]
* ```
*/
DualQuat<_Tp> operator-(const DualQuat<_Tp>&) const;
/**
* @brief Subtraction assignment operator of two dual quaternions p and q.
* It subtracts right operand from the left operand and assign the result to left operand.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* p -= q; // equivalent to p = p - q
* std::cout << p << std::endl; //[-4, -4, -4, -4, 4, -4, -4, -4]
*
* ```
*/
DualQuat<_Tp>& operator-=(const DualQuat<_Tp>&);
/**
* @brief Addition operator of two dual quaternions p and q.
* It returns a new dual quaternion that each value is the sum of \f$p_i\f$ and \f$q_i\f$.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* std::cout << p + q << std::endl; //[6, 8, 10, 12, 14, 16, 18, 20]
* ```
*/
DualQuat<_Tp> operator+(const DualQuat<_Tp>&) const;
/**
* @brief Addition assignment operator of two dual quaternions p and q.
* It adds right operand to the left operand and assign the result to left operand.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* p += q; // equivalent to p = p + q
* std::cout << p << std::endl; //[6, 8, 10, 12, 14, 16, 18, 20]
*
* ```
*/
DualQuat<_Tp>& operator+=(const DualQuat<_Tp>&);
/**
* @brief Multiplication assignment operator of two quaternions.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of dual quaternion multiplication:
* The dual quaternion can be written as an ordered pair of quaternions [A, B]. Thus
* \f[
* \begin{equation}
* \begin{split}
* p * q &= [A, B][C, D]\\
* &=[AC, AD + BC]
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* p *= q;
* std::cout << p << std::endl; //[-60, 12, 30, 24, -216, 80, 124, 120]
* ```
*/
DualQuat<_Tp>& operator*=(const DualQuat<_Tp>&);
/**
* @brief Multiplication assignment operator of a quaternions and a scalar.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of dual quaternion multiplication with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\
* &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double s = 2.0;
* p *= s;
* std::cout << p << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
DualQuat<_Tp> operator*=(const _Tp s);
/**
* @brief Multiplication operator of two dual quaternions q and p.
* Multiplies values on either side of the operator.
*
* Rule of dual quaternion multiplication:
* The dual quaternion can be written as an ordered pair of quaternions [A, B]. Thus
* \f[
* \begin{equation}
* \begin{split}
* p * q &= [A, B][C, D]\\
* &=[AC, AD + BC]
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* std::cout << p * q << std::endl; //[-60, 12, 30, 24, -216, 80, 124, 120]
* ```
*/
DualQuat<_Tp> operator*(const DualQuat<_Tp>&) const;
/**
* @brief Division operator of a dual quaternions and a scalar.
* It divides left operand with the right operand and assign the result to left operand.
*
* Rule of dual quaternion division with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p / s &= [w, x, y, z, w\_, x\_, y\_, z\_] / s\\
* &=[w/s, x/s, y/s, z/s, w\_/s, x\_/s, y\_/s, z\_/s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double s = 2.0;
* p /= s; // equivalent to p = p / s
* std::cout << p << std::endl; //[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
* ```
* @note the type of scalar should be equal to this dual quaternion.
*/
DualQuat<_Tp> operator/(const _Tp s) const;
/**
* @brief Division operator of two dual quaternions p and q.
* Divides left hand operand by right hand operand.
*
* Rule of dual quaternion division with a dual quaternion:
* \f[
* \begin{equation}
* \begin{split}
* p / q &= p * q.inv()\\
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* std::cout << p / q << std::endl; // equivalent to p * q.inv()
* ```
*/
DualQuat<_Tp> operator/(const DualQuat<_Tp>&) const;
/**
* @brief Division assignment operator of two dual quaternions p and q;
* It divides left operand with the right operand and assign the result to left operand.
*
* Rule of dual quaternion division with a quaternion:
* \f[
* \begin{equation}
* \begin{split}
* p / q&= p * q.inv()\\
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12};
* p /= q; // equivalent to p = p * q.inv()
* std::cout << p << std::endl;
* ```
*/
DualQuat<_Tp>& operator/=(const DualQuat<_Tp>&);
/**
* @brief Division assignment operator of a dual quaternions and a scalar.
* It divides left operand with the right operand and assign the result to left operand.
*
* Rule of dual quaternion division with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p / s &= [w, x, y, z, w\_, x\_, y\_ ,z\_] / s\\
* &=[w / s, x / s, y / s, z / s, w\_ / \space s, x\_ / \space s, y\_ / \space s, z\_ / \space s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double s = 2.0;;
* p /= s; // equivalent to p = p / s
* std::cout << p << std::endl; //[0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
Quat<_Tp>& operator/=(const _Tp s);
/**
* @brief Addition operator of a scalar and a dual quaternions.
* Adds right hand operand from left hand operand.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double scalar = 2.0;
* std::cout << scalar + p << std::endl; //[3.0, 2, 3, 4, 5, 6, 7, 8]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
template <typename T>
friend DualQuat<T> cv::operator+(const T s, const DualQuat<T>&);
/**
* @brief Addition operator of a dual quaternions and a scalar.
* Adds right hand operand from left hand operand.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double scalar = 2.0;
* std::cout << p + scalar << std::endl; //[3.0, 2, 3, 4, 5, 6, 7, 8]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
template <typename T>
friend DualQuat<T> cv::operator+(const DualQuat<T>&, const T s);
/**
* @brief Multiplication operator of a scalar and a dual quaternions.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of dual quaternion multiplication with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\
* &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double s = 2.0;
* std::cout << s * p << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
template <typename T>
friend DualQuat<T> cv::operator*(const T s, const DualQuat<T>&);
/**
* @brief Subtraction operator of a dual quaternion and a scalar.
* Subtracts right hand operand from left hand operand.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double scalar = 2.0;
* std::cout << p - scalar << std::endl; //[-1, 2, 3, 4, 5, 6, 7, 8]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
template <typename T>
friend DualQuat<T> cv::operator-(const DualQuat<T>&, const T s);
/**
* @brief Subtraction operator of a scalar and a dual quaternions.
* Subtracts right hand operand from left hand operand.
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double scalar = 2.0;
* std::cout << scalar - p << std::endl; //[1.0, -2, -3, -4, -5, -6, -7, -8]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
template <typename T>
friend DualQuat<T> cv::operator-(const T s, const DualQuat<T>&);
/**
* @brief Multiplication operator of a dual quaternions and a scalar.
* It multiplies right operand with the left operand and assign the result to left operand.
*
* Rule of dual quaternion multiplication with a scalar:
* \f[
* \begin{equation}
* \begin{split}
* p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\
* &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s].
* \end{split}
* \end{equation}
* \f]
*
* For example
* ```
* DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8};
* double s = 2.0;
* std::cout << p * s << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16]
* ```
* @note the type of scalar should be equal to the dual quaternion.
*/
template <typename T>
friend DualQuat<T> cv::operator*(const DualQuat<T>&, const T s);
template <typename S>
friend std::ostream& cv::operator<<(std::ostream&, const DualQuat<S>&);
};
using DualQuatd = DualQuat<double>;
using DualQuatf = DualQuat<float>;
//! @} core
}//namespace
#include "dualquaternion.inl.hpp"
#endif /* OPENCV_CORE_QUATERNION_HPP */