core.hpp
80.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_CORE_HPP
#define OPENCV_GAPI_CORE_HPP
#include <math.h>
#include <utility> // std::tuple
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/streaming/format.hpp>
/** \defgroup gapi_core G-API Core functionality
@{
@defgroup gapi_math Graph API: Math operations
@defgroup gapi_pixelwise Graph API: Pixelwise operations
@defgroup gapi_matrixop Graph API: Operations on matrices
@defgroup gapi_transform Graph API: Image and channel composition functions
@}
*/
namespace cv { namespace gapi {
namespace core {
using GMat2 = std::tuple<GMat,GMat>;
using GMat3 = std::tuple<GMat,GMat,GMat>; // FIXME: how to avoid this?
using GMat4 = std::tuple<GMat,GMat,GMat,GMat>;
using GMatScalar = std::tuple<GMat, GScalar>;
G_TYPED_KERNEL(GAdd, <GMat(GMat, GMat, int)>, "org.opencv.core.math.add") {
static GMatDesc outMeta(GMatDesc a, GMatDesc b, int ddepth) {
if (ddepth == -1)
{
// OpenCV: When the input arrays in add/subtract/multiply/divide
// functions have different depths, the output array depth must be
// explicitly specified!
// See artim_op() @ arithm.cpp
GAPI_Assert(a.chan == b.chan);
GAPI_Assert(a.depth == b.depth);
return a;
}
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GAddC, <GMat(GMat, GScalar, int)>, "org.opencv.core.math.addC") {
static GMatDesc outMeta(GMatDesc a, GScalarDesc, int ddepth) {
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GSub, <GMat(GMat, GMat, int)>, "org.opencv.core.math.sub") {
static GMatDesc outMeta(GMatDesc a, GMatDesc b, int ddepth) {
if (ddepth == -1)
{
// This macro should select a larger data depth from a and b
// considering the number of channels in the same
// FIXME!!! Clarify if it is valid for sub()
GAPI_Assert(a.chan == b.chan);
ddepth = std::max(a.depth, b.depth);
}
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GSubC, <GMat(GMat, GScalar, int)>, "org.opencv.core.math.subC") {
static GMatDesc outMeta(GMatDesc a, GScalarDesc, int ddepth) {
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GSubRC,<GMat(GScalar, GMat, int)>, "org.opencv.core.math.subRC") {
static GMatDesc outMeta(GScalarDesc, GMatDesc b, int ddepth) {
return b.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GMul, <GMat(GMat, GMat, double, int)>, "org.opencv.core.math.mul") {
static GMatDesc outMeta(GMatDesc a, GMatDesc, double, int ddepth) {
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GMulCOld, <GMat(GMat, double, int)>, "org.opencv.core.math.mulCOld") {
static GMatDesc outMeta(GMatDesc a, double, int ddepth) {
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GMulC, <GMat(GMat, GScalar, int)>, "org.opencv.core.math.mulC"){
static GMatDesc outMeta(GMatDesc a, GScalarDesc, int ddepth) {
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GMulS, <GMat(GMat, GScalar)>, "org.opencv.core.math.muls") {
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a;
}
}; // FIXME: Merge with MulC
G_TYPED_KERNEL(GDiv, <GMat(GMat, GMat, double, int)>, "org.opencv.core.math.div") {
static GMatDesc outMeta(GMatDesc a, GMatDesc b, double, int ddepth) {
if (ddepth == -1)
{
GAPI_Assert(a.depth == b.depth);
return b;
}
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GDivC, <GMat(GMat, GScalar, double, int)>, "org.opencv.core.math.divC") {
static GMatDesc outMeta(GMatDesc a, GScalarDesc, double, int ddepth) {
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GDivRC, <GMat(GScalar, GMat, double, int)>, "org.opencv.core.math.divRC") {
static GMatDesc outMeta(GScalarDesc, GMatDesc b, double, int ddepth) {
return b.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GMean, <GScalar(GMat)>, "org.opencv.core.math.mean") {
static GScalarDesc outMeta(GMatDesc) {
return empty_scalar_desc();
}
};
G_TYPED_KERNEL_M(GPolarToCart, <GMat2(GMat, GMat, bool)>, "org.opencv.core.math.polarToCart") {
static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc, GMatDesc a, bool) {
return std::make_tuple(a, a);
}
};
G_TYPED_KERNEL_M(GCartToPolar, <GMat2(GMat, GMat, bool)>, "org.opencv.core.math.cartToPolar") {
static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc x, GMatDesc, bool) {
return std::make_tuple(x, x);
}
};
G_TYPED_KERNEL(GPhase, <GMat(GMat, GMat, bool)>, "org.opencv.core.math.phase") {
static GMatDesc outMeta(const GMatDesc &inx, const GMatDesc &, bool) {
return inx;
}
};
G_TYPED_KERNEL(GMask, <GMat(GMat,GMat)>, "org.opencv.core.pixelwise.mask") {
static GMatDesc outMeta(GMatDesc in, GMatDesc) {
return in;
}
};
G_TYPED_KERNEL(GCmpGT, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpGT") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpGE, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpGE") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpLE, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpLE") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpLT, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpLT") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpEQ, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpEQ") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpNE, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpNE") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpGTScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpGTScalar"){
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpGEScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpGEScalar"){
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpLEScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpLEScalar"){
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpLTScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpLTScalar"){
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpEQScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpEQScalar"){
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GCmpNEScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpNEScalar"){
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a.withDepth(CV_8U);
}
};
G_TYPED_KERNEL(GAnd, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_and") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a;
}
};
G_TYPED_KERNEL(GAndS, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_andS") {
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a;
}
};
G_TYPED_KERNEL(GOr, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_or") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a;
}
};
G_TYPED_KERNEL(GOrS, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_orS") {
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a;
}
};
G_TYPED_KERNEL(GXor, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_xor") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a;
}
};
G_TYPED_KERNEL(GXorS, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_xorS") {
static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
return a;
}
};
G_TYPED_KERNEL(GNot, <GMat(GMat)>, "org.opencv.core.pixelwise.bitwise_not") {
static GMatDesc outMeta(GMatDesc a) {
return a;
}
};
G_TYPED_KERNEL(GSelect, <GMat(GMat, GMat, GMat)>, "org.opencv.core.pixelwise.select") {
static GMatDesc outMeta(GMatDesc a, GMatDesc, GMatDesc) {
return a;
}
};
G_TYPED_KERNEL(GMin, <GMat(GMat, GMat)>, "org.opencv.core.matrixop.min") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a;
}
};
G_TYPED_KERNEL(GMax, <GMat(GMat, GMat)>, "org.opencv.core.matrixop.max") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a;
}
};
G_TYPED_KERNEL(GAbsDiff, <GMat(GMat, GMat)>, "org.opencv.core.matrixop.absdiff") {
static GMatDesc outMeta(GMatDesc a, GMatDesc) {
return a;
}
};
G_TYPED_KERNEL(GAbsDiffC, <GMat(GMat,GScalar)>, "org.opencv.core.matrixop.absdiffC") {
static GMatDesc outMeta(const GMatDesc& a, const GScalarDesc&) {
return a;
}
};
G_TYPED_KERNEL(GSum, <GScalar(GMat)>, "org.opencv.core.matrixop.sum") {
static GScalarDesc outMeta(GMatDesc) {
return empty_scalar_desc();
}
};
G_TYPED_KERNEL(GCountNonZero, <GOpaque<int>(GMat)>, "org.opencv.core.matrixop.countNonZero") {
static GOpaqueDesc outMeta(GMatDesc in) {
GAPI_Assert(in.chan == 1);
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GAddW, <GMat(GMat, double, GMat, double, double, int)>, "org.opencv.core.matrixop.addweighted") {
static GMatDesc outMeta(GMatDesc a, double, GMatDesc b, double, double, int ddepth) {
if (ddepth == -1)
{
// OpenCV: When the input arrays in add/subtract/multiply/divide
// functions have different depths, the output array depth must be
// explicitly specified!
// See artim_op() @ arithm.cpp
GAPI_Assert(a.chan == b.chan);
GAPI_Assert(a.depth == b.depth);
return a;
}
return a.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GNormL1, <GScalar(GMat)>, "org.opencv.core.matrixop.norml1") {
static GScalarDesc outMeta(GMatDesc) {
return empty_scalar_desc();
}
};
G_TYPED_KERNEL(GNormL2, <GScalar(GMat)>, "org.opencv.core.matrixop.norml2") {
static GScalarDesc outMeta(GMatDesc) {
return empty_scalar_desc();
}
};
G_TYPED_KERNEL(GNormInf, <GScalar(GMat)>, "org.opencv.core.matrixop.norminf") {
static GScalarDesc outMeta(GMatDesc) {
return empty_scalar_desc();
}
};
G_TYPED_KERNEL_M(GIntegral, <GMat2(GMat, int, int)>, "org.opencv.core.matrixop.integral") {
static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc in, int sd, int sqd) {
return std::make_tuple(in.withSizeDelta(1,1).withDepth(sd),
in.withSizeDelta(1,1).withDepth(sqd));
}
};
G_TYPED_KERNEL(GThreshold, <GMat(GMat, GScalar, GScalar, int)>, "org.opencv.core.matrixop.threshold") {
static GMatDesc outMeta(GMatDesc in, GScalarDesc, GScalarDesc, int) {
return in;
}
};
G_TYPED_KERNEL_M(GThresholdOT, <GMatScalar(GMat, GScalar, int)>, "org.opencv.core.matrixop.thresholdOT") {
static std::tuple<GMatDesc,GScalarDesc> outMeta(GMatDesc in, GScalarDesc, int) {
return std::make_tuple(in, empty_scalar_desc());
}
};
G_TYPED_KERNEL(GInRange, <GMat(GMat, GScalar, GScalar)>, "org.opencv.core.matrixop.inrange") {
static GMatDesc outMeta(GMatDesc in, GScalarDesc, GScalarDesc) {
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL_M(GSplit3, <GMat3(GMat)>, "org.opencv.core.transform.split3") {
static std::tuple<GMatDesc, GMatDesc, GMatDesc> outMeta(GMatDesc in) {
const auto out_depth = in.depth;
const auto out_desc = in.withType(out_depth, 1);
return std::make_tuple(out_desc, out_desc, out_desc);
}
};
G_TYPED_KERNEL_M(GSplit4, <GMat4(GMat)>,"org.opencv.core.transform.split4") {
static std::tuple<GMatDesc, GMatDesc, GMatDesc, GMatDesc> outMeta(GMatDesc in) {
const auto out_depth = in.depth;
const auto out_desc = in.withType(out_depth, 1);
return std::make_tuple(out_desc, out_desc, out_desc, out_desc);
}
};
G_TYPED_KERNEL(GResize, <GMat(GMat,Size,double,double,int)>, "org.opencv.core.transform.resize") {
static GMatDesc outMeta(GMatDesc in, Size sz, double fx, double fy, int) {
if (sz.width != 0 && sz.height != 0)
{
return in.withSize(sz);
}
else
{
int outSz_w = static_cast<int>(round(in.size.width * fx));
int outSz_h = static_cast<int>(round(in.size.height * fy));
GAPI_Assert(outSz_w > 0 && outSz_h > 0);
return in.withSize(Size(outSz_w, outSz_h));
}
}
};
G_TYPED_KERNEL(GResizeP, <GMatP(GMatP,Size,int)>, "org.opencv.core.transform.resizeP") {
static GMatDesc outMeta(GMatDesc in, Size sz, int interp) {
GAPI_Assert(in.depth == CV_8U);
GAPI_Assert(in.chan == 3);
GAPI_Assert(in.planar);
GAPI_Assert(interp == cv::INTER_LINEAR);
return in.withSize(sz);
}
};
G_TYPED_KERNEL(GMerge3, <GMat(GMat,GMat,GMat)>, "org.opencv.core.transform.merge3") {
static GMatDesc outMeta(GMatDesc in, GMatDesc, GMatDesc) {
// Preserve depth and add channel component
return in.withType(in.depth, 3);
}
};
G_TYPED_KERNEL(GMerge4, <GMat(GMat,GMat,GMat,GMat)>, "org.opencv.core.transform.merge4") {
static GMatDesc outMeta(GMatDesc in, GMatDesc, GMatDesc, GMatDesc) {
// Preserve depth and add channel component
return in.withType(in.depth, 4);
}
};
G_TYPED_KERNEL(GRemap, <GMat(GMat, Mat, Mat, int, int, Scalar)>, "org.opencv.core.transform.remap") {
static GMatDesc outMeta(GMatDesc in, Mat m1, Mat, int, int, Scalar) {
return in.withSize(m1.size());
}
};
G_TYPED_KERNEL(GFlip, <GMat(GMat, int)>, "org.opencv.core.transform.flip") {
static GMatDesc outMeta(GMatDesc in, int) {
return in;
}
};
// TODO: eliminate the need in this kernel (streaming)
G_TYPED_KERNEL(GCrop, <GMat(GMat, Rect)>, "org.opencv.core.transform.crop") {
static GMatDesc outMeta(GMatDesc in, Rect rc) {
return in.withSize(Size(rc.width, rc.height));
}
};
G_TYPED_KERNEL(GConcatHor, <GMat(GMat, GMat)>, "org.opencv.imgproc.transform.concatHor") {
static GMatDesc outMeta(GMatDesc l, GMatDesc r) {
return l.withSizeDelta(+r.size.width, 0);
}
};
G_TYPED_KERNEL(GConcatVert, <GMat(GMat, GMat)>, "org.opencv.imgproc.transform.concatVert") {
static GMatDesc outMeta(GMatDesc t, GMatDesc b) {
return t.withSizeDelta(0, +b.size.height);
}
};
G_TYPED_KERNEL(GLUT, <GMat(GMat, Mat)>, "org.opencv.core.transform.LUT") {
static GMatDesc outMeta(GMatDesc in, Mat) {
return in;
}
};
G_TYPED_KERNEL(GConvertTo, <GMat(GMat, int, double, double)>, "org.opencv.core.transform.convertTo") {
static GMatDesc outMeta(GMatDesc in, int rdepth, double, double) {
return rdepth < 0 ? in : in.withDepth(rdepth);
}
};
G_TYPED_KERNEL(GSqrt, <GMat(GMat)>, "org.opencv.core.math.sqrt") {
static GMatDesc outMeta(GMatDesc in) {
return in;
}
};
G_TYPED_KERNEL(GNormalize, <GMat(GMat, double, double, int, int)>, "org.opencv.core.normalize") {
static GMatDesc outMeta(GMatDesc in, double, double, int, int ddepth) {
// unlike opencv doesn't have a mask as a parameter
return (ddepth < 0 ? in : in.withDepth(ddepth));
}
};
G_TYPED_KERNEL(GWarpPerspective, <GMat(GMat, const Mat&, Size, int, int, const cv::Scalar&)>, "org.opencv.core.warpPerspective") {
static GMatDesc outMeta(GMatDesc in, const Mat&, Size dsize, int, int borderMode, const cv::Scalar&) {
GAPI_Assert((borderMode == cv::BORDER_CONSTANT || borderMode == cv::BORDER_REPLICATE) &&
"cv::gapi::warpPerspective supports only cv::BORDER_CONSTANT and cv::BORDER_REPLICATE border modes");
return in.withType(in.depth, in.chan).withSize(dsize);
}
};
G_TYPED_KERNEL(GWarpAffine, <GMat(GMat, const Mat&, Size, int, int, const cv::Scalar&)>, "org.opencv.core.warpAffine") {
static GMatDesc outMeta(GMatDesc in, const Mat&, Size dsize, int, int border_mode, const cv::Scalar&) {
GAPI_Assert(border_mode != cv::BORDER_TRANSPARENT &&
"cv::BORDER_TRANSPARENT mode is not supported in cv::gapi::warpAffine");
return in.withType(in.depth, in.chan).withSize(dsize);
}
};
G_TYPED_KERNEL(
GKMeansND,
<std::tuple<GOpaque<double>,GMat,GMat>(GMat,int,GMat,TermCriteria,int,KmeansFlags)>,
"org.opencv.core.kmeansND") {
static std::tuple<GOpaqueDesc,GMatDesc,GMatDesc>
outMeta(const GMatDesc& in, int K, const GMatDesc& bestLabels, const TermCriteria&, int,
KmeansFlags flags) {
GAPI_Assert(in.depth == CV_32F);
std::vector<int> amount_n_dim = detail::checkVector(in);
int amount = amount_n_dim[0], dim = amount_n_dim[1];
if (amount == -1) // Mat with height != 1, width != 1, channels != 1 given
{ // which means that kmeans will consider the following:
amount = in.size.height;
dim = in.size.width * in.chan;
}
// kmeans sets these labels' sizes when no bestLabels given:
GMatDesc out_labels(CV_32S, 1, Size{1, amount});
// kmeans always sets these centers' sizes:
GMatDesc centers (CV_32F, 1, Size{dim, K});
if (flags & KMEANS_USE_INITIAL_LABELS)
{
GAPI_Assert(bestLabels.depth == CV_32S);
int labels_amount = detail::checkVector(bestLabels, 1u);
GAPI_Assert(labels_amount == amount);
out_labels = bestLabels; // kmeans preserves bestLabels' sizes if given
}
return std::make_tuple(empty_gopaque_desc(), out_labels, centers);
}
};
G_TYPED_KERNEL(
GKMeansNDNoInit,
<std::tuple<GOpaque<double>,GMat,GMat>(GMat,int,TermCriteria,int,KmeansFlags)>,
"org.opencv.core.kmeansNDNoInit") {
static std::tuple<GOpaqueDesc,GMatDesc,GMatDesc>
outMeta(const GMatDesc& in, int K, const TermCriteria&, int, KmeansFlags flags) {
GAPI_Assert( !(flags & KMEANS_USE_INITIAL_LABELS) );
GAPI_Assert(in.depth == CV_32F);
std::vector<int> amount_n_dim = detail::checkVector(in);
int amount = amount_n_dim[0], dim = amount_n_dim[1];
if (amount == -1) // Mat with height != 1, width != 1, channels != 1 given
{ // which means that kmeans will consider the following:
amount = in.size.height;
dim = in.size.width * in.chan;
}
GMatDesc out_labels(CV_32S, 1, Size{1, amount});
GMatDesc centers (CV_32F, 1, Size{dim, K});
return std::make_tuple(empty_gopaque_desc(), out_labels, centers);
}
};
G_TYPED_KERNEL(GKMeans2D, <std::tuple<GOpaque<double>,GArray<int>,GArray<Point2f>>
(GArray<Point2f>,int,GArray<int>,TermCriteria,int,KmeansFlags)>,
"org.opencv.core.kmeans2D") {
static std::tuple<GOpaqueDesc,GArrayDesc,GArrayDesc>
outMeta(const GArrayDesc&,int,const GArrayDesc&,const TermCriteria&,int,KmeansFlags) {
return std::make_tuple(empty_gopaque_desc(), empty_array_desc(), empty_array_desc());
}
};
G_TYPED_KERNEL(GKMeans3D, <std::tuple<GOpaque<double>,GArray<int>,GArray<Point3f>>
(GArray<Point3f>,int,GArray<int>,TermCriteria,int,KmeansFlags)>,
"org.opencv.core.kmeans3D") {
static std::tuple<GOpaqueDesc,GArrayDesc,GArrayDesc>
outMeta(const GArrayDesc&,int,const GArrayDesc&,const TermCriteria&,int,KmeansFlags) {
return std::make_tuple(empty_gopaque_desc(), empty_array_desc(), empty_array_desc());
}
};
} // namespace core
namespace streaming {
// Operations for Streaming (declared in this header for convenience)
G_TYPED_KERNEL(GSize, <GOpaque<Size>(GMat)>, "org.opencv.streaming.size") {
static GOpaqueDesc outMeta(const GMatDesc&) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GSizeR, <GOpaque<Size>(GOpaque<Rect>)>, "org.opencv.streaming.sizeR") {
static GOpaqueDesc outMeta(const GOpaqueDesc&) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GSizeMF, <GOpaque<Size>(GFrame)>, "org.opencv.streaming.sizeMF") {
static GOpaqueDesc outMeta(const GFrameDesc&) {
return empty_gopaque_desc();
}
};
} // namespace streaming
//! @addtogroup gapi_math
//! @{
/** @brief Calculates the per-element sum of two matrices.
The function add calculates sum of two matrices of the same size and the same number of channels:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
The function can be replaced with matrix expressions:
\f[\texttt{dst} = \texttt{src1} + \texttt{src2}\f]
The input matrices and the output matrix can all have the same or different depths. For example, you
can add a 16-bit unsigned matrix to a 8-bit signed matrix and store the sum as a 32-bit
floating-point matrix. Depth of the output matrix is determined by the ddepth parameter.
If src1.depth() == src2.depth(), ddepth can be set to the default -1. In this case, the output matrix will have
the same depth as the input matrices.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.add"
@param src1 first input matrix.
@param src2 second input matrix.
@param ddepth optional depth of the output matrix.
@sa sub, addWeighted
*/
GAPI_EXPORTS_W GMat add(const GMat& src1, const GMat& src2, int ddepth = -1);
/** @brief Calculates the per-element sum of matrix and given scalar.
The function addC adds a given scalar value to each element of given matrix.
The function can be replaced with matrix expressions:
\f[\texttt{dst} = \texttt{src1} + \texttt{c}\f]
Depth of the output matrix is determined by the ddepth parameter.
If ddepth is set to default -1, the depth of output matrix will be the same as the depth of input matrix.
The matrices can be single or multi channel. Output matrix must have the same size and number of channels as the input matrix.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.addC"
@param src1 first input matrix.
@param c scalar value to be added.
@param ddepth optional depth of the output matrix.
@sa sub, addWeighted
*/
GAPI_EXPORTS_W GMat addC(const GMat& src1, const GScalar& c, int ddepth = -1);
//! @overload
GAPI_EXPORTS GMat addC(const GScalar& c, const GMat& src1, int ddepth = -1);
/** @brief Calculates the per-element difference between two matrices.
The function sub calculates difference between two matrices, when both matrices have the same size and the same number of
channels:
\f[\texttt{dst}(I) = \texttt{src1}(I) - \texttt{src2}(I)\f]
The function can be replaced with matrix expressions:
\f[\texttt{dst} = \texttt{src1} - \texttt{src2}\f]
The input matrices and the output matrix can all have the same or different depths. For example, you
can subtract two 8-bit unsigned matrices store the result as a 16-bit signed matrix.
Depth of the output matrix is determined by the ddepth parameter.
If src1.depth() == src2.depth(), ddepth can be set to the default -1. In this case, the output matrix will have
the same depth as the input matrices. The matrices can be single or multi channel.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.sub"
@param src1 first input matrix.
@param src2 second input matrix.
@param ddepth optional depth of the output matrix.
@sa add, addC
*/
GAPI_EXPORTS GMat sub(const GMat& src1, const GMat& src2, int ddepth = -1);
/** @brief Calculates the per-element difference between matrix and given scalar.
The function can be replaced with matrix expressions:
\f[\texttt{dst} = \texttt{src} - \texttt{c}\f]
Depth of the output matrix is determined by the ddepth parameter.
If ddepth is set to default -1, the depth of output matrix will be the same as the depth of input matrix.
The matrices can be single or multi channel. Output matrix must have the same size as src.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.subC"
@param src first input matrix.
@param c scalar value to subtracted.
@param ddepth optional depth of the output matrix.
@sa add, addC, subRC
*/
GAPI_EXPORTS GMat subC(const GMat& src, const GScalar& c, int ddepth = -1);
/** @brief Calculates the per-element difference between given scalar and the matrix.
The function can be replaced with matrix expressions:
\f[\texttt{dst} = \texttt{val} - \texttt{src}\f]
Depth of the output matrix is determined by the ddepth parameter.
If ddepth is set to default -1, the depth of output matrix will be the same as the depth of input matrix.
The matrices can be single or multi channel. Output matrix must have the same size as src.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.subRC"
@param c scalar value to subtract from.
@param src input matrix to be subtracted.
@param ddepth optional depth of the output matrix.
@sa add, addC, subC
*/
GAPI_EXPORTS GMat subRC(const GScalar& c, const GMat& src, int ddepth = -1);
/** @brief Calculates the per-element scaled product of two matrices.
The function mul calculates the per-element product of two matrices:
\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
If src1.depth() == src2.depth(), ddepth can be set to the default -1. In this case, the output matrix will have
the same depth as the input matrices. The matrices can be single or multi channel.
Output matrix must have the same size as input matrices.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.mul"
@param src1 first input matrix.
@param src2 second input matrix of the same size and the same depth as src1.
@param scale optional scale factor.
@param ddepth optional depth of the output matrix.
@sa add, sub, div, addWeighted
*/
GAPI_EXPORTS GMat mul(const GMat& src1, const GMat& src2, double scale = 1.0, int ddepth = -1);
/** @brief Multiplies matrix by scalar.
The function mulC multiplies each element of matrix src by given scalar value:
\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I) \cdot \texttt{multiplier} )\f]
The matrices can be single or multi channel. Output matrix must have the same size as src.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.mulC"
@param src input matrix.
@param multiplier factor to be multiplied.
@param ddepth optional depth of the output matrix. If -1, the depth of output matrix will be the same as input matrix depth.
@sa add, sub, div, addWeighted
*/
GAPI_EXPORTS GMat mulC(const GMat& src, double multiplier, int ddepth = -1);
//! @overload
GAPI_EXPORTS GMat mulC(const GMat& src, const GScalar& multiplier, int ddepth = -1); // FIXME: merge with mulc
//! @overload
GAPI_EXPORTS GMat mulC(const GScalar& multiplier, const GMat& src, int ddepth = -1); // FIXME: merge with mulc
/** @brief Performs per-element division of two matrices.
The function divides one matrix by another:
\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
When src2(I) is zero, dst(I) will also be zero. Different channels of
multi-channel matrices are processed independently.
The matrices can be single or multi channel. Output matrix must have the same size and depth as src.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.div"
@param src1 first input matrix.
@param src2 second input matrix of the same size and depth as src1.
@param scale scalar factor.
@param ddepth optional depth of the output matrix; you can only pass -1 when src1.depth() == src2.depth().
@sa mul, add, sub
*/
GAPI_EXPORTS GMat div(const GMat& src1, const GMat& src2, double scale, int ddepth = -1);
/** @brief Divides matrix by scalar.
The function divC divides each element of matrix src by given scalar value:
\f[\texttt{dst(I) = saturate(src(I)*scale/divisor)}\f]
When divisor is zero, dst(I) will also be zero. Different channels of
multi-channel matrices are processed independently.
The matrices can be single or multi channel. Output matrix must have the same size and depth as src.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.divC"
@param src input matrix.
@param divisor number to be divided by.
@param ddepth optional depth of the output matrix. If -1, the depth of output matrix will be the same as input matrix depth.
@param scale scale factor.
@sa add, sub, div, addWeighted
*/
GAPI_EXPORTS GMat divC(const GMat& src, const GScalar& divisor, double scale, int ddepth = -1);
/** @brief Divides scalar by matrix.
The function divRC divides given scalar by each element of matrix src and keep the division result in new matrix of the same size and type as src:
\f[\texttt{dst(I) = saturate(divident*scale/src(I))}\f]
When src(I) is zero, dst(I) will also be zero. Different channels of
multi-channel matrices are processed independently.
The matrices can be single or multi channel. Output matrix must have the same size and depth as src.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.divRC"
@param src input matrix.
@param divident number to be divided.
@param ddepth optional depth of the output matrix. If -1, the depth of output matrix will be the same as input matrix depth.
@param scale scale factor
@sa add, sub, div, addWeighted
*/
GAPI_EXPORTS GMat divRC(const GScalar& divident, const GMat& src, double scale, int ddepth = -1);
/** @brief Applies a mask to a matrix.
The function mask set value from given matrix if the corresponding pixel value in mask matrix set to true,
and set the matrix value to 0 otherwise.
Supported src matrix data types are @ref CV_8UC1, @ref CV_16SC1, @ref CV_16UC1. Supported mask data type is @ref CV_8UC1.
@note Function textual ID is "org.opencv.core.math.mask"
@param src input matrix.
@param mask input mask matrix.
*/
GAPI_EXPORTS GMat mask(const GMat& src, const GMat& mask);
/** @brief Calculates an average (mean) of matrix elements.
The function mean calculates the mean value M of matrix elements,
independently for each channel, and return it.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.math.mean"
@param src input matrix.
@sa countNonZero, min, max
*/
GAPI_EXPORTS_W GScalar mean(const GMat& src);
/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
The function polarToCart calculates the Cartesian coordinates of each 2D
vector represented by the corresponding elements of magnitude and angle:
\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
The relative accuracy of the estimated coordinates is about 1e-6.
First output is a matrix of x-coordinates of 2D vectors.
Second output is a matrix of y-coordinates of 2D vectors.
Both output must have the same size and depth as input matrices.
@note Function textual ID is "org.opencv.core.math.polarToCart"
@param magnitude input floating-point @ref CV_32FC1 matrix (1xN) of magnitudes of 2D vectors;
@param angle input floating-point @ref CV_32FC1 matrix (1xN) of angles of 2D vectors.
@param angleInDegrees when true, the input angles are measured in
degrees, otherwise, they are measured in radians.
@sa cartToPolar, exp, log, pow, sqrt
*/
GAPI_EXPORTS std::tuple<GMat, GMat> polarToCart(const GMat& magnitude, const GMat& angle,
bool angleInDegrees = false);
/** @brief Calculates the magnitude and angle of 2D vectors.
The function cartToPolar calculates either the magnitude, angle, or both
for every 2D vector (x(I),y(I)):
\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
The angles are calculated with accuracy about 0.3 degrees. For the point
(0,0), the angle is set to 0.
First output is a matrix of magnitudes of the same size and depth as input x.
Second output is a matrix of angles that has the same size and depth as
x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
@note Function textual ID is "org.opencv.core.math.cartToPolar"
@param x matrix of @ref CV_32FC1 x-coordinates.
@param y array of @ref CV_32FC1 y-coordinates.
@param angleInDegrees a flag, indicating whether the angles are measured
in radians (which is by default), or in degrees.
@sa polarToCart
*/
GAPI_EXPORTS std::tuple<GMat, GMat> cartToPolar(const GMat& x, const GMat& y,
bool angleInDegrees = false);
/** @brief Calculates the rotation angle of 2D vectors.
The function cv::phase calculates the rotation angle of each 2D vector that
is formed from the corresponding elements of x and y :
\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
the corresponding angle(I) is set to 0.
@param x input floating-point array of x-coordinates of 2D vectors.
@param y input array of y-coordinates of 2D vectors; it must have the
same size and the same type as x.
@param angleInDegrees when true, the function calculates the angle in
degrees, otherwise, they are measured in radians.
@return array of vector angles; it has the same size and same type as x.
*/
GAPI_EXPORTS GMat phase(const GMat& x, const GMat &y, bool angleInDegrees = false);
/** @brief Calculates a square root of array elements.
The function cv::gapi::sqrt calculates a square root of each input array element.
In case of multi-channel arrays, each channel is processed
independently. The accuracy is approximately the same as of the built-in
std::sqrt .
@param src input floating-point array.
@return output array of the same size and type as src.
*/
GAPI_EXPORTS GMat sqrt(const GMat &src);
//! @} gapi_math
//!
//! @addtogroup gapi_pixelwise
//! @{
/** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are greater compare to elements in second.
The function compares elements of two matrices src1 and src2 of the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) > \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
\f[\texttt{dst} = \texttt{src1} > \texttt{src2}\f]
Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
the input matrices/matrix.
Supported input matrix data types are @ref CV_8UC1, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpGT"
@param src1 first input matrix.
@param src2 second input matrix/scalar of the same depth as first input matrix.
@sa min, max, threshold, cmpLE, cmpGE, cmpLT
*/
GAPI_EXPORTS GMat cmpGT(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpGTScalar"
*/
GAPI_EXPORTS GMat cmpGT(const GMat& src1, const GScalar& src2);
/** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are less than elements in second.
The function compares elements of two matrices src1 and src2 of the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) < \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
\f[\texttt{dst} = \texttt{src1} < \texttt{src2}\f]
Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
the input matrices/matrix.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLT"
@param src1 first input matrix.
@param src2 second input matrix/scalar of the same depth as first input matrix.
@sa min, max, threshold, cmpLE, cmpGE, cmpGT
*/
GAPI_EXPORTS GMat cmpLT(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLTScalar"
*/
GAPI_EXPORTS GMat cmpLT(const GMat& src1, const GScalar& src2);
/** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are greater or equal compare to elements in second.
The function compares elements of two matrices src1 and src2 of the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) >= \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
\f[\texttt{dst} = \texttt{src1} >= \texttt{src2}\f]
Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
the input matrices.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpGE"
@param src1 first input matrix.
@param src2 second input matrix/scalar of the same depth as first input matrix.
@sa min, max, threshold, cmpLE, cmpGT, cmpLT
*/
GAPI_EXPORTS GMat cmpGE(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLGEcalar"
*/
GAPI_EXPORTS GMat cmpGE(const GMat& src1, const GScalar& src2);
/** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are less or equal compare to elements in second.
The function compares elements of two matrices src1 and src2 of the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) <= \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
\f[\texttt{dst} = \texttt{src1} <= \texttt{src2}\f]
Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
the input matrices.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLE"
@param src1 first input matrix.
@param src2 second input matrix/scalar of the same depth as first input matrix.
@sa min, max, threshold, cmpGT, cmpGE, cmpLT
*/
GAPI_EXPORTS GMat cmpLE(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLEScalar"
*/
GAPI_EXPORTS GMat cmpLE(const GMat& src1, const GScalar& src2);
/** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are equal to elements in second.
The function compares elements of two matrices src1 and src2 of the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) == \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
\f[\texttt{dst} = \texttt{src1} == \texttt{src2}\f]
Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
the input matrices.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpEQ"
@param src1 first input matrix.
@param src2 second input matrix/scalar of the same depth as first input matrix.
@sa min, max, threshold, cmpNE
*/
GAPI_EXPORTS GMat cmpEQ(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpEQScalar"
*/
GAPI_EXPORTS GMat cmpEQ(const GMat& src1, const GScalar& src2);
/** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are not equal to elements in second.
The function compares elements of two matrices src1 and src2 of the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) != \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
\f[\texttt{dst} = \texttt{src1} != \texttt{src2}\f]
Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
the input matrices.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpNE"
@param src1 first input matrix.
@param src2 second input matrix/scalar of the same depth as first input matrix.
@sa min, max, threshold, cmpEQ
*/
GAPI_EXPORTS GMat cmpNE(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.compare.cmpNEScalar"
*/
GAPI_EXPORTS GMat cmpNE(const GMat& src1, const GScalar& src2);
/** @brief computes bitwise conjunction of the two matrixes (src1 & src2)
Calculates the per-element bit-wise logical conjunction of two matrices of the same size.
In case of floating-point matrices, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel matrices, each channel is processed
independently. Output matrix must have the same size and depth as the input
matrices.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.bitwise_and"
@param src1 first input matrix.
@param src2 second input matrix.
*/
GAPI_EXPORTS GMat bitwise_and(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.bitwise_andS"
@param src1 first input matrix.
@param src2 scalar, which will be per-lemenetly conjuncted with elements of src1.
*/
GAPI_EXPORTS GMat bitwise_and(const GMat& src1, const GScalar& src2);
/** @brief computes bitwise disjunction of the two matrixes (src1 | src2)
Calculates the per-element bit-wise logical disjunction of two matrices of the same size.
In case of floating-point matrices, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel matrices, each channel is processed
independently. Output matrix must have the same size and depth as the input
matrices.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.bitwise_or"
@param src1 first input matrix.
@param src2 second input matrix.
*/
GAPI_EXPORTS GMat bitwise_or(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.bitwise_orS"
@param src1 first input matrix.
@param src2 scalar, which will be per-lemenetly disjuncted with elements of src1.
*/
GAPI_EXPORTS GMat bitwise_or(const GMat& src1, const GScalar& src2);
/** @brief computes bitwise logical "exclusive or" of the two matrixes (src1 ^ src2)
Calculates the per-element bit-wise logical "exclusive or" of two matrices of the same size.
In case of floating-point matrices, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel matrices, each channel is processed
independently. Output matrix must have the same size and depth as the input
matrices.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.bitwise_xor"
@param src1 first input matrix.
@param src2 second input matrix.
*/
GAPI_EXPORTS GMat bitwise_xor(const GMat& src1, const GMat& src2);
/** @overload
@note Function textual ID is "org.opencv.core.pixelwise.bitwise_xorS"
@param src1 first input matrix.
@param src2 scalar, for which per-lemenet "logical or" operation on elements of src1 will be performed.
*/
GAPI_EXPORTS GMat bitwise_xor(const GMat& src1, const GScalar& src2);
/** @brief Inverts every bit of an array.
The function bitwise_not calculates per-element bit-wise inversion of the input
matrix:
\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
In case of floating-point matrices, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel matrices, each channel is processed
independently. Output matrix must have the same size and depth as the input
matrix.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.bitwise_not"
@param src input matrix.
*/
GAPI_EXPORTS GMat bitwise_not(const GMat& src);
/** @brief Select values from either first or second of input matrices by given mask.
The function set to the output matrix either the value from the first input matrix if corresponding value of mask matrix is 255,
or value from the second input matrix (if value of mask matrix set to 0).
Input mask matrix must be of @ref CV_8UC1 type, two other inout matrices and output matrix should be of the same type. The size should
be the same for all input and output matrices.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.pixelwise.select"
@param src1 first input matrix.
@param src2 second input matrix.
@param mask mask input matrix.
*/
GAPI_EXPORTS GMat select(const GMat& src1, const GMat& src2, const GMat& mask);
//! @} gapi_pixelwise
//! @addtogroup gapi_matrixop
//! @{
/** @brief Calculates per-element minimum of two matrices.
The function min calculates the per-element minimum of two matrices of the same size, number of channels and depth:
\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
where I is a multi-dimensional index of matrix elements. In case of
multi-channel matrices, each channel is processed independently.
Output matrix must be of the same size and depth as src1.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.min"
@param src1 first input matrix.
@param src2 second input matrix of the same size and depth as src1.
@sa max, cmpEQ, cmpLT, cmpLE
*/
GAPI_EXPORTS GMat min(const GMat& src1, const GMat& src2);
/** @brief Calculates per-element maximum of two matrices.
The function max calculates the per-element maximum of two matrices of the same size, number of channels and depth:
\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
where I is a multi-dimensional index of matrix elements. In case of
multi-channel matrices, each channel is processed independently.
Output matrix must be of the same size and depth as src1.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.max"
@param src1 first input matrix.
@param src2 second input matrix of the same size and depth as src1.
@sa min, compare, cmpEQ, cmpGT, cmpGE
*/
GAPI_EXPORTS GMat max(const GMat& src1, const GMat& src2);
/** @brief Calculates the per-element absolute difference between two matrices.
The function absDiff calculates absolute difference between two matrices of the same size and depth:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
where I is a multi-dimensional index of matrix elements. In case of
multi-channel matrices, each channel is processed independently.
Output matrix must have the same size and depth as input matrices.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.absdiff"
@param src1 first input matrix.
@param src2 second input matrix.
@sa abs
*/
GAPI_EXPORTS GMat absDiff(const GMat& src1, const GMat& src2);
/** @brief Calculates absolute value of matrix elements.
The function abs calculates absolute difference between matrix elements and given scalar value:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{matC}(I)|)\f]
where matC is constructed from given scalar c and has the same sizes and depth as input matrix src.
Output matrix must be of the same size and depth as src.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.absdiffC"
@param src input matrix.
@param c scalar to be subtracted.
@sa min, max
*/
GAPI_EXPORTS GMat absDiffC(const GMat& src, const GScalar& c);
/** @brief Calculates sum of all matrix elements.
The function sum calculates sum of all matrix elements, independently for each channel.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.sum"
@param src input matrix.
@sa countNonZero, mean, min, max
*/
GAPI_EXPORTS GScalar sum(const GMat& src);
/** @brief Counts non-zero array elements.
The function returns the number of non-zero elements in src :
\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
Supported matrix data types are @ref CV_8UC1, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.countNonZero"
@param src input single-channel matrix.
@sa mean, min, max
*/
GAPI_EXPORTS GOpaque<int> countNonZero(const GMat& src);
/** @brief Calculates the weighted sum of two matrices.
The function addWeighted calculates the weighted sum of two matrices as follows:
\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f]
where I is a multi-dimensional index of array elements. In case of multi-channel matrices, each
channel is processed independently.
The function can be replaced with a matrix expression:
\f[\texttt{dst}(I) = \texttt{alpha} * \texttt{src1}(I) - \texttt{beta} * \texttt{src2}(I) + \texttt{gamma} \f]
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.addweighted"
@param src1 first input matrix.
@param alpha weight of the first matrix elements.
@param src2 second input matrix of the same size and channel number as src1.
@param beta weight of the second matrix elements.
@param gamma scalar added to each sum.
@param ddepth optional depth of the output matrix.
@sa add, sub
*/
GAPI_EXPORTS GMat addWeighted(const GMat& src1, double alpha, const GMat& src2, double beta, double gamma, int ddepth = -1);
/** @brief Calculates the absolute L1 norm of a matrix.
This version of normL1 calculates the absolute L1 norm of src.
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{1} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows
\f{align*}
\| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\
\f}
and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
\f{align*}
\| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\
\f}
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.norml1"
@param src input matrix.
@sa normL2, normInf
*/
GAPI_EXPORTS GScalar normL1(const GMat& src);
/** @brief Calculates the absolute L2 norm of a matrix.
This version of normL2 calculates the absolute L2 norm of src.
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{2} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows
\f{align*}
\| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
\f}
and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
\f{align*}
\| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
\f}
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.norml2"
@param src input matrix.
@sa normL1, normInf
*/
GAPI_EXPORTS GScalar normL2(const GMat& src);
/** @brief Calculates the absolute infinite norm of a matrix.
This version of normInf calculates the absolute infinite norm of src.
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows
\f{align*}
\| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2
\f}
and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
\f{align*}
\| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5.
\f}
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.core.matrixop.norminf"
@param src input matrix.
@sa normL1, normL2
*/
GAPI_EXPORTS GScalar normInf(const GMat& src);
/** @brief Calculates the integral of an image.
The function calculates one or more integral images for the source image as follows:
\f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
\f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f]
The function return integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f) and
integral image for squared pixel values; it is \f$(W+1)\times (H+)\f$, double-precision floating-point (64f) array.
@note Function textual ID is "org.opencv.core.matrixop.integral"
@param src input image.
@param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
CV_64F.
@param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
*/
GAPI_EXPORTS std::tuple<GMat, GMat> integral(const GMat& src, int sdepth = -1, int sqdepth = -1);
/** @brief Applies a fixed-level threshold to each matrix element.
The function applies fixed-level thresholding to a single- or multiple-channel matrix.
The function is typically used to get a bi-level (binary) image out of a grayscale image ( cmp functions could be also used for
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
values. There are several types of thresholding supported by the function. They are determined by
type parameter.
Also, the special values cv::THRESH_OTSU or cv::THRESH_TRIANGLE may be combined with one of the
above values. In these cases, the function determines the optimal threshold value using the Otsu's
or Triangle algorithm and uses it instead of the specified thresh . The function returns the
computed threshold value in addititon to thresholded matrix.
The Otsu's and Triangle methods are implemented only for 8-bit matrices.
Input image should be single channel only in case of cv::THRESH_OTSU or cv::THRESH_TRIANGLE flags.
Output matrix must be of the same size and depth as src.
@note Function textual ID is "org.opencv.core.matrixop.threshold"
@param src input matrix (@ref CV_8UC1, @ref CV_8UC3, or @ref CV_32FC1).
@param thresh threshold value.
@param maxval maximum value to use with the cv::THRESH_BINARY and cv::THRESH_BINARY_INV thresholding
types.
@param type thresholding type (see the cv::ThresholdTypes).
@sa min, max, cmpGT, cmpLE, cmpGE, cmpLT
*/
GAPI_EXPORTS GMat threshold(const GMat& src, const GScalar& thresh, const GScalar& maxval, int type);
/** @overload
This function applicable for all threshold types except CV_THRESH_OTSU and CV_THRESH_TRIANGLE
@note Function textual ID is "org.opencv.core.matrixop.thresholdOT"
*/
GAPI_EXPORTS_W std::tuple<GMat, GScalar> threshold(const GMat& src, const GScalar& maxval, int type);
/** @brief Applies a range-level threshold to each matrix element.
The function applies range-level thresholding to a single- or multiple-channel matrix.
It sets output pixel value to OxFF if the corresponding pixel value of input matrix is in specified range,or 0 otherwise.
Input and output matrices must be CV_8UC1.
@note Function textual ID is "org.opencv.core.matrixop.inRange"
@param src input matrix (CV_8UC1).
@param threshLow lower boundary value.
@param threshUp upper boundary value.
@sa threshold
*/
GAPI_EXPORTS GMat inRange(const GMat& src, const GScalar& threshLow, const GScalar& threshUp);
//! @} gapi_matrixop
//! @addtogroup gapi_transform
//! @{
/** @brief Resizes an image.
The function resizes the image src down to or up to the specified size.
Output image size will have the size dsize (when dsize is non-zero) or the size computed from
src.size(), fx, and fy; the depth of output is the same as of src.
If you want to resize src so that it fits the pre-created dst,
you may call the function as follows:
@code
// explicitly specify dsize=dst.size(); fx and fy will be computed from that.
resize(src, dst, dst.size(), 0, 0, interpolation);
@endcode
If you want to decimate the image by factor of 2 in each direction, you can call the function this
way:
@code
// specify fx and fy and let the function compute the destination image size.
resize(src, dst, Size(), 0.5, 0.5, interpolation);
@endcode
To shrink an image, it will generally look best with cv::INTER_AREA interpolation, whereas to
enlarge an image, it will generally look best with cv::INTER_CUBIC (slow) or cv::INTER_LINEAR
(faster but still looks OK).
@note Function textual ID is "org.opencv.core.transform.resize"
@param src input image.
@param dsize output image size; if it equals zero, it is computed as:
\f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
Either dsize or both fx and fy must be non-zero.
@param fx scale factor along the horizontal axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.width/src.cols}\f]
@param fy scale factor along the vertical axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.height/src.rows}\f]
@param interpolation interpolation method, see cv::InterpolationFlags
@sa warpAffine, warpPerspective, remap, resizeP
*/
GAPI_EXPORTS GMat resize(const GMat& src, const Size& dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR);
/** @brief Resizes a planar image.
The function resizes the image src down to or up to the specified size.
Planar image memory layout is three planes laying in the memory contiguously,
so the image height should be plane_height*plane_number, image type is @ref CV_8UC1.
Output image size will have the size dsize, the depth of output is the same as of src.
@note Function textual ID is "org.opencv.core.transform.resizeP"
@param src input image, must be of @ref CV_8UC1 type;
@param dsize output image size;
@param interpolation interpolation method, only cv::INTER_LINEAR is supported at the moment
@sa warpAffine, warpPerspective, remap, resize
*/
GAPI_EXPORTS GMatP resizeP(const GMatP& src, const Size& dsize, int interpolation = cv::INTER_LINEAR);
/** @brief Creates one 4-channel matrix out of 4 single-channel ones.
The function merges several matrices to make a single multi-channel matrix. That is, each
element of the output matrix will be a concatenation of the elements of the input matrices, where
elements of i-th input matrix are treated as mv[i].channels()-element vectors.
Output matrix must be of @ref CV_8UC4 type.
The function split4 does the reverse operation.
@note
- Function textual ID is "org.opencv.core.transform.merge4"
@param src1 first input @ref CV_8UC1 matrix to be merged.
@param src2 second input @ref CV_8UC1 matrix to be merged.
@param src3 third input @ref CV_8UC1 matrix to be merged.
@param src4 fourth input @ref CV_8UC1 matrix to be merged.
@sa merge3, split4, split3
*/
GAPI_EXPORTS GMat merge4(const GMat& src1, const GMat& src2, const GMat& src3, const GMat& src4);
/** @brief Creates one 3-channel matrix out of 3 single-channel ones.
The function merges several matrices to make a single multi-channel matrix. That is, each
element of the output matrix will be a concatenation of the elements of the input matrices, where
elements of i-th input matrix are treated as mv[i].channels()-element vectors.
Output matrix must be of @ref CV_8UC3 type.
The function split3 does the reverse operation.
@note
- Function textual ID is "org.opencv.core.transform.merge3"
@param src1 first input @ref CV_8UC1 matrix to be merged.
@param src2 second input @ref CV_8UC1 matrix to be merged.
@param src3 third input @ref CV_8UC1 matrix to be merged.
@sa merge4, split4, split3
*/
GAPI_EXPORTS GMat merge3(const GMat& src1, const GMat& src2, const GMat& src3);
/** @brief Divides a 4-channel matrix into 4 single-channel matrices.
The function splits a 4-channel matrix into 4 single-channel matrices:
\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
All output matrices must be of @ref CV_8UC1 type.
The function merge4 does the reverse operation.
@note
- Function textual ID is "org.opencv.core.transform.split4"
@param src input @ref CV_8UC4 matrix.
@sa split3, merge3, merge4
*/
GAPI_EXPORTS std::tuple<GMat, GMat, GMat,GMat> split4(const GMat& src);
/** @brief Divides a 3-channel matrix into 3 single-channel matrices.
The function splits a 3-channel matrix into 3 single-channel matrices:
\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
All output matrices must be of @ref CV_8UC1 type.
The function merge3 does the reverse operation.
@note
- Function textual ID is "org.opencv.core.transform.split3"
@param src input @ref CV_8UC3 matrix.
@sa split4, merge3, merge4
*/
GAPI_EXPORTS_W std::tuple<GMat, GMat, GMat> split3(const GMat& src);
/** @brief Applies a generic geometrical transformation to an image.
The function remap transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f]
where values of pixels with non-integer coordinates are computed using one of available
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
\f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to
convert from floating to fixed-point representations of a map is that they can yield much faster
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
Output image must be of the same size and depth as input one.
@note
- Function textual ID is "org.opencv.core.transform.remap"
- Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
@param src Source image.
@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2,
CV_32FC1, or CV_32FC2.
@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
if map1 is (x,y) points), respectively.
@param interpolation Interpolation method (see cv::InterpolationFlags). The methods #INTER_AREA
and #INTER_LINEAR_EXACT are not supported by this function.
@param borderMode Pixel extrapolation method (see cv::BorderTypes). When
borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that
corresponds to the "outliers" in the source image are not modified by the function.
@param borderValue Value used in case of a constant border. By default, it is 0.
*/
GAPI_EXPORTS GMat remap(const GMat& src, const Mat& map1, const Mat& map2,
int interpolation, int borderMode = BORDER_CONSTANT,
const Scalar& borderValue = Scalar());
/** @brief Flips a 2D matrix around vertical, horizontal, or both axes.
The function flips the matrix in one of three different ways (row
and column indices are 0-based):
\f[\texttt{dst} _{ij} =
\left\{
\begin{array}{l l}
\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
\end{array}
\right.\f]
The example scenarios of using the function are the following:
* Vertical flipping of the image (flipCode == 0) to switch between
top-left and bottom-left image origin. This is a typical operation
in video processing on Microsoft Windows\* OS.
* Horizontal flipping of the image with the subsequent horizontal
shift and absolute difference calculation to check for a
vertical-axis symmetry (flipCode \> 0).
* Simultaneous horizontal and vertical flipping of the image with
the subsequent shift and absolute difference calculation to check
for a central symmetry (flipCode \< 0).
* Reversing the order of point arrays (flipCode \> 0 or
flipCode == 0).
Output image must be of the same depth as input one, size should be correct for given flipCode.
@note Function textual ID is "org.opencv.core.transform.flip"
@param src input matrix.
@param flipCode a flag to specify how to flip the array; 0 means
flipping around the x-axis and positive value (for example, 1) means
flipping around y-axis. Negative value (for example, -1) means flipping
around both axes.
@sa remap
*/
GAPI_EXPORTS GMat flip(const GMat& src, int flipCode);
/** @brief Crops a 2D matrix.
The function crops the matrix by given cv::Rect.
Output matrix must be of the same depth as input one, size is specified by given rect size.
@note Function textual ID is "org.opencv.core.transform.crop"
@param src input matrix.
@param rect a rect to crop a matrix to
@sa resize
*/
GAPI_EXPORTS GMat crop(const GMat& src, const Rect& rect);
/** @brief Applies horizontal concatenation to given matrices.
The function horizontally concatenates two GMat matrices (with the same number of rows).
@code{.cpp}
GMat A = { 1, 4,
2, 5,
3, 6 };
GMat B = { 7, 10,
8, 11,
9, 12 };
GMat C = gapi::concatHor(A, B);
//C:
//[1, 4, 7, 10;
// 2, 5, 8, 11;
// 3, 6, 9, 12]
@endcode
Output matrix must the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.imgproc.transform.concatHor"
@param src1 first input matrix to be considered for horizontal concatenation.
@param src2 second input matrix to be considered for horizontal concatenation.
@sa concatVert
*/
GAPI_EXPORTS GMat concatHor(const GMat& src1, const GMat& src2);
/** @overload
The function horizontally concatenates given number of GMat matrices (with the same number of columns).
Output matrix must the same number of columns and depth as the input matrices, and the sum of rows of input matrices.
@param v vector of input matrices to be concatenated horizontally.
*/
GAPI_EXPORTS GMat concatHor(const std::vector<GMat> &v);
/** @brief Applies vertical concatenation to given matrices.
The function vertically concatenates two GMat matrices (with the same number of cols).
@code{.cpp}
GMat A = { 1, 7,
2, 8,
3, 9 };
GMat B = { 4, 10,
5, 11,
6, 12 };
GMat C = gapi::concatVert(A, B);
//C:
//[1, 7;
// 2, 8;
// 3, 9;
// 4, 10;
// 5, 11;
// 6, 12]
@endcode
Output matrix must the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
@note Function textual ID is "org.opencv.imgproc.transform.concatVert"
@param src1 first input matrix to be considered for vertical concatenation.
@param src2 second input matrix to be considered for vertical concatenation.
@sa concatHor
*/
GAPI_EXPORTS GMat concatVert(const GMat& src1, const GMat& src2);
/** @overload
The function vertically concatenates given number of GMat matrices (with the same number of columns).
Output matrix must the same number of columns and depth as the input matrices, and the sum of rows of input matrices.
@param v vector of input matrices to be concatenated vertically.
*/
GAPI_EXPORTS GMat concatVert(const std::vector<GMat> &v);
/** @brief Performs a look-up table transform of a matrix.
The function LUT fills the output matrix with values from the look-up table. Indices of the entries
are taken from the input matrix. That is, the function processes each element of src as follows:
\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I))}\f]
Supported matrix data types are @ref CV_8UC1.
Output is a matrix of the same size and number of channels as src, and the same depth as lut.
@note Function textual ID is "org.opencv.core.transform.LUT"
@param src input matrix of 8-bit elements.
@param lut look-up table of 256 elements; in case of multi-channel input array, the table should
either have a single channel (in this case the same table is used for all channels) or the same
number of channels as in the input matrix.
*/
GAPI_EXPORTS GMat LUT(const GMat& src, const Mat& lut);
/** @brief Converts a matrix to another data depth with optional scaling.
The method converts source pixel values to the target data depth. saturate_cast\<\> is applied at
the end to avoid possible overflows:
\f[m(x,y) = saturate \_ cast<rType>( \alpha (*this)(x,y) + \beta )\f]
Output matrix must be of the same size as input one.
@note Function textual ID is "org.opencv.core.transform.convertTo"
@param src input matrix to be converted from.
@param rdepth desired output matrix depth or, rather, the depth since the number of channels are the
same as the input has; if rdepth is negative, the output matrix will have the same depth as the input.
@param alpha optional scale factor.
@param beta optional delta added to the scaled values.
*/
GAPI_EXPORTS GMat convertTo(const GMat& src, int rdepth, double alpha=1, double beta=0);
/** @brief Normalizes the norm or value range of an array.
The function normalizes scale and shift the input array elements so that
\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
when normType=NORM_MINMAX (for dense arrays only).
@note Function textual ID is "org.opencv.core.normalize"
@param src input array.
@param alpha norm value to normalize to or the lower range boundary in case of the range
normalization.
@param beta upper range boundary in case of the range normalization; it is not used for the norm
normalization.
@param norm_type normalization type (see cv::NormTypes).
@param ddepth when negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =ddepth.
@sa norm, Mat::convertTo
*/
GAPI_EXPORTS GMat normalize(const GMat& src, double alpha, double beta,
int norm_type, int ddepth = -1);
/** @brief Applies a perspective transformation to an image.
The function warpPerspective transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
\frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
and then put in the formula above instead of M. The function cannot operate in-place.
@param src input image.
@param M \f$3\times 3\f$ transformation matrix.
@param dsize size of the output image.
@param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
@param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
@param borderValue value used in case of a constant border; by default, it equals 0.
@sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform
*/
GAPI_EXPORTS GMat warpPerspective(const GMat& src, const Mat& M, const Size& dsize, int flags = cv::INTER_LINEAR,
int borderMode = cv::BORDER_CONSTANT, const Scalar& borderValue = Scalar());
/** @brief Applies an affine transformation to an image.
The function warpAffine transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f]
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
with #invertAffineTransform and then put in the formula above instead of M. The function cannot
operate in-place.
@param src input image.
@param M \f$2\times 3\f$ transformation matrix.
@param dsize size of the output image.
@param flags combination of interpolation methods (see #InterpolationFlags) and the optional
flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
@param borderMode pixel extrapolation method (see #BorderTypes);
borderMode=#BORDER_TRANSPARENT isn't supported
@param borderValue value used in case of a constant border; by default, it is 0.
@sa warpPerspective, resize, remap, getRectSubPix, transform
*/
GAPI_EXPORTS GMat warpAffine(const GMat& src, const Mat& M, const Size& dsize, int flags = cv::INTER_LINEAR,
int borderMode = cv::BORDER_CONSTANT, const Scalar& borderValue = Scalar());
//! @} gapi_transform
/** @brief Finds centers of clusters and groups input samples around the clusters.
The function kmeans implements a k-means algorithm that finds the centers of K clusters
and groups the input samples around the clusters. As an output, \f$\texttt{bestLabels}_i\f$
contains a 0-based cluster index for the \f$i^{th}\f$ sample.
@note
- Function textual ID is "org.opencv.core.kmeansND"
- In case of an N-dimentional points' set given, input GMat can have the following traits:
2 dimensions, a single row or column if there are N channels,
or N columns if there is a single channel. Mat should have @ref CV_32F depth.
- Although, if GMat with height != 1, width != 1, channels != 1 given as data, n-dimensional
samples are considered given in amount of A, where A = height, n = width * channels.
- In case of GMat given as data:
- the output labels are returned as 1-channel GMat with sizes
width = 1, height = A, where A is samples amount, or width = bestLabels.width,
height = bestLabels.height if bestLabels given;
- the cluster centers are returned as 1-channel GMat with sizes
width = n, height = K, where n is samples' dimentionality and K is clusters' amount.
- As one of possible usages, if you want to control the initial labels for each attempt
by yourself, you can utilize just the core of the function. To do that, set the number
of attempts to 1, initialize labels each time using a custom algorithm, pass them with the
( flags = #KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best (most-compact) clustering.
@param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
Function can take GArray<Point2f>, GArray<Point3f> for 2D and 3D cases or GMat for any
dimentionality and channels.
@param K Number of clusters to split the set by.
@param bestLabels Optional input integer array that can store the supposed initial cluster indices
for every sample. Used when ( flags = #KMEANS_USE_INITIAL_LABELS ) flag is set.
@param criteria The algorithm termination criteria, that is, the maximum number of iterations
and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of
the cluster centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
@param attempts Flag to specify the number of times the algorithm is executed using different
initial labellings. The algorithm returns the labels that yield the best compactness (see the first
function return value).
@param flags Flag that can take values of cv::KmeansFlags .
@return
- Compactness measure that is computed as
\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
after every attempt. The best (minimum) value is chosen and the corresponding labels and the
compactness value are returned by the function.
- Integer array that stores the cluster indices for every sample.
- Array of the cluster centers.
*/
GAPI_EXPORTS std::tuple<GOpaque<double>,GMat,GMat>
kmeans(const GMat& data, const int K, const GMat& bestLabels,
const TermCriteria& criteria, const int attempts, const KmeansFlags flags);
/** @overload
@note
- Function textual ID is "org.opencv.core.kmeansNDNoInit"
- #KMEANS_USE_INITIAL_LABELS flag must not be set while using this overload.
*/
GAPI_EXPORTS_W std::tuple<GOpaque<double>,GMat,GMat>
kmeans(const GMat& data, const int K, const TermCriteria& criteria, const int attempts,
const KmeansFlags flags);
/** @overload
@note Function textual ID is "org.opencv.core.kmeans2D"
*/
GAPI_EXPORTS_W std::tuple<GOpaque<double>,GArray<int>,GArray<Point2f>>
kmeans(const GArray<Point2f>& data, const int K, const GArray<int>& bestLabels,
const TermCriteria& criteria, const int attempts, const KmeansFlags flags);
/** @overload
@note Function textual ID is "org.opencv.core.kmeans3D"
*/
GAPI_EXPORTS std::tuple<GOpaque<double>,GArray<int>,GArray<Point3f>>
kmeans(const GArray<Point3f>& data, const int K, const GArray<int>& bestLabels,
const TermCriteria& criteria, const int attempts, const KmeansFlags flags);
namespace streaming {
/** @brief Gets dimensions from Mat.
@note Function textual ID is "org.opencv.streaming.size"
@param src Input tensor
@return Size (tensor dimensions).
*/
GAPI_EXPORTS_W GOpaque<Size> size(const GMat& src);
/** @overload
Gets dimensions from rectangle.
@note Function textual ID is "org.opencv.streaming.sizeR"
@param r Input rectangle.
@return Size (rectangle dimensions).
*/
GAPI_EXPORTS_W GOpaque<Size> size(const GOpaque<Rect>& r);
/** @brief Gets dimensions from MediaFrame.
@note Function textual ID is "org.opencv.streaming.sizeMF"
@param src Input frame
@return Size (frame dimensions).
*/
GAPI_EXPORTS GOpaque<Size> size(const GFrame& src);
} //namespace streaming
} //namespace gapi
} //namespace cv
#endif //OPENCV_GAPI_CORE_HPP