Fangjun Kuang
Committed by GitHub

Release v1.0 (#18)

* Release v1.0

* Add link to doc
cmake_minimum_required(VERSION 3.8 FATAL_ERROR)
project(sherpa-onnx)
set(SHERPA_ONNX_VERSION "0.1")
set(SHERPA_ONNX_VERSION "1.0")
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib")
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib")
... ...
# Introduction
Documentation: <https://k2-fsa.github.io/sherpa/onnx/index.html>
See <https://github.com/k2-fsa/sherpa>
This repo uses [onnxruntime](https://github.com/microsoft/onnxruntime) and
... ...
... ... @@ -13,5 +13,5 @@ target_link_libraries(sherpa-onnx
kaldi-native-fbank-core
)
add_executable(sherpa-show-onnx-info show-onnx-info.cc)
target_link_libraries(sherpa-show-onnx-info onnxruntime)
# add_executable(sherpa-show-onnx-info show-onnx-info.cc)
# target_link_libraries(sherpa-show-onnx-info onnxruntime)
... ...
... ... @@ -80,8 +80,8 @@ Usage:
/path/to/encoder.onnx \
/path/to/decoder.onnx \
/path/to/joiner.onnx \
/path/to/joiner_encoder_proj.ncnn.param \
/path/to/joiner_decoder_proj.ncnn.param \
/path/to/joiner_encoder_proj.onnx \
/path/to/joiner_decoder_proj.onnx \
/path/to/foo.wav [num_threads]
You can download pre-trained models from the following repository:
... ...