Toggle navigation
Toggle navigation
此项目
正在载入...
Sign in
xuning
/
sherpaonnx
转到一个项目
Toggle navigation
项目
群组
代码片段
帮助
Toggle navigation pinning
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Network
Create a new issue
Builds
Commits
Authored by
Fangjun Kuang
2025-04-02 21:16:14 +0800
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Committed by
GitHub
2025-04-02 21:16:14 +0800
Commit
eee557583640164d3632c2271bcf16f0d697aa35
eee55758
1 parent
0de7e1b9
Add Kotlin and Java API for Dolphin CTC models (#2086)
显示空白字符变更
内嵌
并排对比
正在显示
20 个修改的文件
包含
513 行增加
和
14 行删除
.github/workflows/apk-asr-2pass.yaml
.github/workflows/apk-vad-asr.yaml
.github/workflows/run-java-test.yaml
.gitignore
java-api-examples/NonStreamingDecodeFileDolphinCtc.java
java-api-examples/README.md
java-api-examples/VadNonStreamingDolphinCtc.java
java-api-examples/run-non-streaming-decode-file-dolphin-ctc.sh
java-api-examples/run-vad-non-streaming-dolphin-ctc.sh
kotlin-api-examples/run.sh
kotlin-api-examples/test_offline_asr.kt
scripts/apk/generate-asr-2pass-apk-script.py
scripts/apk/generate-asr-apk-script.py
scripts/apk/generate-vad-asr-apk-script.py
sherpa-onnx/java-api/Makefile
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineDolphinModelConfig.java
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineModelConfig.java
sherpa-onnx/jni/offline-recognizer.cc
sherpa-onnx/kotlin-api/OfflineRecognizer.kt
sherpa-onnx/kotlin-api/OnlineRecognizer.kt
.github/workflows/apk-asr-2pass.yaml
查看文件 @
eee5575
...
...
@@ -23,8 +23,8 @@ jobs:
fail-fast
:
false
matrix
:
os
:
[
ubuntu-latest
]
total
:
[
"
4"
]
index
:
[
"
0"
,
"
1"
,
"
2"
,
"
3"
]
total
:
[
"
16"
]
index
:
[
"
0"
,
"
1"
,
"
2"
,
"
3"
,
"
4"
,
"
5"
,
"
6"
,
"
7"
,
"
8"
,
"
9"
,
"
10"
,
"
11"
,
"
12"
,
"
13"
,
"
14"
,
"
15"
]
steps
:
-
uses
:
actions/checkout@v4
...
...
.github/workflows/apk-vad-asr.yaml
查看文件 @
eee5575
...
...
@@ -23,8 +23,8 @@ jobs:
fail-fast
:
false
matrix
:
os
:
[
ubuntu-latest
]
total
:
[
"
10"
]
index
:
[
"
0"
,
"
1"
,
"
2"
,
"
3"
,
"
4"
,
"
5"
,
"
6"
,
"
7"
,
"
8"
,
"
9"
]
total
:
[
"
18"
]
index
:
[
"
0"
,
"
1"
,
"
2"
,
"
3"
,
"
4"
,
"
5"
,
"
6"
,
"
7"
,
"
8"
,
"
9"
,
"
10"
,
"
11"
,
"
12"
,
"
13"
,
"
14"
,
"
15"
,
"
16"
,
"
17"
]
steps
:
-
uses
:
actions/checkout@v4
...
...
.github/workflows/run-java-test.yaml
查看文件 @
eee5575
...
...
@@ -105,6 +105,16 @@ jobs:
make -j4
ls -lh lib
-
name
:
Run java test (VAD + Non-streaming Dolphin CTC)
shell
:
bash
run
:
|
cd ./java-api-examples
./run-vad-non-streaming-dolphin-ctc.sh
rm *.onnx
ls -lh *.wav
rm *.wav
rm -rf sherpa-onnx-dolphin-*
-
name
:
Run speech enhancement (GTCRN)
shell
:
bash
run
:
|
...
...
@@ -135,6 +145,9 @@ jobs:
run
:
|
cd ./java-api-examples
./run-non-streaming-decode-file-dolphin-ctc.sh
rm -rf sherpa-onnx-dolphin-*
./run-non-streaming-decode-file-moonshine.sh
rm -rf sherpa-onnx-moonshine-*
...
...
.gitignore
查看文件 @
eee5575
...
...
@@ -140,3 +140,4 @@ README-DEV.txt
*.jit
##clion
.idea
sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02
...
...
java-api-examples/NonStreamingDecodeFileDolphinCtc.java
0 → 100644
查看文件 @
eee5575
// Copyright 2025 Xiaomi Corporation
// This file shows how to use an offline Dolphin CTC model, i.e.,
// non-streaming Dolphin CTC model, to decode files.
import
com.k2fsa.sherpa.onnx.*
;
public
class
NonStreamingDecodeFileDolphinCtc
{
public
static
void
main
(
String
[]
args
)
{
// please refer to
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
// to download model files
String
model
=
"./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/model.int8.onnx"
;
String
tokens
=
"./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/tokens.txt"
;
String
waveFilename
=
"./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/test_wavs/0.wav"
;
WaveReader
reader
=
new
WaveReader
(
waveFilename
);
OfflineDolphinModelConfig
dolphin
=
OfflineDolphinModelConfig
.
builder
().
setModel
(
model
).
build
();
OfflineModelConfig
modelConfig
=
OfflineModelConfig
.
builder
()
.
setDolphin
(
dolphin
)
.
setTokens
(
tokens
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
build
();
OfflineRecognizerConfig
config
=
OfflineRecognizerConfig
.
builder
()
.
setOfflineModelConfig
(
modelConfig
)
.
setDecodingMethod
(
"greedy_search"
)
.
build
();
OfflineRecognizer
recognizer
=
new
OfflineRecognizer
(
config
);
OfflineStream
stream
=
recognizer
.
createStream
();
stream
.
acceptWaveform
(
reader
.
getSamples
(),
reader
.
getSampleRate
());
recognizer
.
decode
(
stream
);
String
text
=
recognizer
.
getResult
(
stream
).
getText
();
System
.
out
.
printf
(
"filename:%s\nresult:%s\n"
,
waveFilename
,
text
);
stream
.
release
();
recognizer
.
release
();
}
}
...
...
java-api-examples/README.md
查看文件 @
eee5575
...
...
@@ -23,6 +23,7 @@ This directory contains examples for the JAVA API of sherpa-onnx.
## Non-Streaming Speech recognition
```
bash
./run-non-streaming-decode-file-dolphin-ctc.sh
./run-non-streaming-decode-file-paraformer.sh
./run-non-streaming-decode-file-sense-voice.sh
./run-non-streaming-decode-file-transducer.sh
...
...
@@ -102,6 +103,12 @@ The punctuation model supports both English and Chinese.
./run-vad-remove-slience.sh
```
## VAD + Non-streaming Dolphin CTC for speech recognition
```
bash
./run-vad-non-streaming-dolphin-ctc.sh
```
## VAD + Non-streaming SenseVoice for speech recognition
```
bash
...
...
java-api-examples/VadNonStreamingDolphinCtc.java
0 → 100644
查看文件 @
eee5575
// Copyright 2025 Xiaomi Corporation
// This file shows how to use a silero_vad model with a non-streaming Dolphin
// CTC model for speech recognition.
import
com.k2fsa.sherpa.onnx.*
;
import
java.util.Arrays
;
public
class
VadNonStreamingSenseVoice
{
public
static
Vad
createVad
()
{
// please download ./silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String
model
=
"./silero_vad.onnx"
;
SileroVadModelConfig
sileroVad
=
SileroVadModelConfig
.
builder
()
.
setModel
(
model
)
.
setThreshold
(
0.5f
)
.
setMinSilenceDuration
(
0.25f
)
.
setMinSpeechDuration
(
0.5f
)
.
setWindowSize
(
512
)
.
setMaxSpeechDuration
(
5.0f
)
.
build
();
VadModelConfig
config
=
VadModelConfig
.
builder
()
.
setSileroVadModelConfig
(
sileroVad
)
.
setSampleRate
(
16000
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
setProvider
(
"cpu"
)
.
build
();
return
new
Vad
(
config
);
}
public
static
OfflineRecognizer
createOfflineRecognizer
()
{
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/dolphin/index.html
// to download model files
String
model
=
"./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/model.int8.onnx"
;
String
tokens
=
"./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/tokens.txt"
;
OfflineDolphinModelConfig
dolphin
=
OfflineDolphinModelConfig
.
builder
().
setModel
(
model
).
build
();
OfflineModelConfig
modelConfig
=
OfflineModelConfig
.
builder
()
.
setDolphin
(
dolphin
)
.
setTokens
(
tokens
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
build
();
OfflineRecognizerConfig
config
=
OfflineRecognizerConfig
.
builder
()
.
setOfflineModelConfig
(
modelConfig
)
.
setDecodingMethod
(
"greedy_search"
)
.
build
();
return
new
OfflineRecognizer
(
config
);
}
public
static
void
main
(
String
[]
args
)
{
Vad
vad
=
createVad
();
OfflineRecognizer
recognizer
=
createOfflineRecognizer
();
// You can download the test file from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String
testWaveFilename
=
"./lei-jun-test.wav"
;
WaveReader
reader
=
new
WaveReader
(
testWaveFilename
);
int
numSamples
=
reader
.
getSamples
().
length
;
int
numIter
=
numSamples
/
512
;
for
(
int
i
=
0
;
i
!=
numIter
;
++
i
)
{
int
start
=
i
*
512
;
int
end
=
start
+
512
;
float
[]
samples
=
Arrays
.
copyOfRange
(
reader
.
getSamples
(),
start
,
end
);
vad
.
acceptWaveform
(
samples
);
if
(
vad
.
isSpeechDetected
())
{
while
(!
vad
.
empty
())
{
SpeechSegment
segment
=
vad
.
front
();
float
startTime
=
segment
.
getStart
()
/
16000.0f
;
float
duration
=
segment
.
getSamples
().
length
/
16000.0f
;
OfflineStream
stream
=
recognizer
.
createStream
();
stream
.
acceptWaveform
(
segment
.
getSamples
(),
16000
);
recognizer
.
decode
(
stream
);
String
text
=
recognizer
.
getResult
(
stream
).
getText
();
stream
.
release
();
if
(!
text
.
isEmpty
())
{
System
.
out
.
printf
(
"%.3f--%.3f: %s\n"
,
startTime
,
startTime
+
duration
,
text
);
}
vad
.
pop
();
}
}
}
vad
.
flush
();
while
(!
vad
.
empty
())
{
SpeechSegment
segment
=
vad
.
front
();
float
startTime
=
segment
.
getStart
()
/
16000.0f
;
float
duration
=
segment
.
getSamples
().
length
/
16000.0f
;
OfflineStream
stream
=
recognizer
.
createStream
();
stream
.
acceptWaveform
(
segment
.
getSamples
(),
16000
);
recognizer
.
decode
(
stream
);
String
text
=
recognizer
.
getResult
(
stream
).
getText
();
stream
.
release
();
if
(!
text
.
isEmpty
())
{
System
.
out
.
printf
(
"%.3f--%.3f: %s\n"
,
startTime
,
startTime
+
duration
,
text
);
}
vad
.
pop
();
}
vad
.
release
();
recognizer
.
release
();
}
}
...
...
java-api-examples/run-non-streaming-decode-file-dolphin-ctc.sh
0 → 100755
查看文件 @
eee5575
#!/usr/bin/env bash
set
-ex
if
[[
! -f ../build/lib/libsherpa-onnx-jni.dylib
&&
! -f ../build/lib/libsherpa-onnx-jni.so
]]
;
then
mkdir -p ../build
pushd
../build
cmake
\
-DSHERPA_ONNX_ENABLE_PYTHON
=
OFF
\
-DSHERPA_ONNX_ENABLE_TESTS
=
OFF
\
-DSHERPA_ONNX_ENABLE_CHECK
=
OFF
\
-DBUILD_SHARED_LIBS
=
ON
\
-DSHERPA_ONNX_ENABLE_PORTAUDIO
=
OFF
\
-DSHERPA_ONNX_ENABLE_JNI
=
ON
\
..
make -j4
ls -lh lib
popd
fi
if
[
! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar
]
;
then
pushd
../sherpa-onnx/java-api
make
popd
fi
if
[
! -f ./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/model.int8.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
tar xvf sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
rm sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
ls -lh sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02
fi
java
\
-Djava.library.path
=
$PWD
/../build/lib
\
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar
\
NonStreamingDecodeFileDolphinCtc.java
...
...
java-api-examples/run-vad-non-streaming-dolphin-ctc.sh
0 → 100755
查看文件 @
eee5575
#!/usr/bin/env bash
set
-ex
if
[[
! -f ../build/lib/libsherpa-onnx-jni.dylib
&&
! -f ../build/lib/libsherpa-onnx-jni.so
]]
;
then
mkdir -p ../build
pushd
../build
cmake
\
-DSHERPA_ONNX_ENABLE_PYTHON
=
OFF
\
-DSHERPA_ONNX_ENABLE_TESTS
=
OFF
\
-DSHERPA_ONNX_ENABLE_CHECK
=
OFF
\
-DBUILD_SHARED_LIBS
=
ON
\
-DSHERPA_ONNX_ENABLE_PORTAUDIO
=
OFF
\
-DSHERPA_ONNX_ENABLE_JNI
=
ON
\
..
make -j4
ls -lh lib
popd
fi
if
[
! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar
]
;
then
pushd
../sherpa-onnx/java-api
make
popd
fi
if
[
! -f ./silero_vad.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
fi
if
[
! -f ./lei-jun-test.wav
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/lei-jun-test.wav
fi
if
[
! -f ./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/model.int8.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
tar xvf sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
rm sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
ls -lh sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02
fi
java
\
-Djava.library.path
=
$PWD
/../build/lib
\
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar
\
./VadNonStreamingDolphinCtc.java
...
...
kotlin-api-examples/run.sh
查看文件 @
eee5575
...
...
@@ -190,6 +190,13 @@ function testSpokenLanguageIdentification() {
}
function
testOfflineAsr
()
{
if
[
! -f ./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/model.int8.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
tar xvf sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
rm sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
ls -lh sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02
fi
if
[
! -f ./sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16/encoder.int8.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16.tar.bz2
tar xvf sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16.tar.bz2
...
...
kotlin-api-examples/test_offline_asr.kt
查看文件 @
eee5575
package com.k2fsa.sherpa.onnx
fun main() {
val types = arrayOf(0, 2, 5, 6, 15, 21, 24)
val types = arrayOf(0, 2, 5, 6, 15, 21, 24
, 25
)
for (type in types) {
test(type)
}
...
...
@@ -18,6 +18,7 @@ fun test(type: Int) {
15 -> "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav"
21 -> "./sherpa-onnx-moonshine-tiny-en-int8/test_wavs/0.wav"
24 -> "./sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16/test_wavs/0.wav"
25 -> "./sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02/test_wavs/0.wav"
else -> null
}
...
...
scripts/apk/generate-asr-2pass-apk-script.py
查看文件 @
eee5575
...
...
@@ -160,6 +160,21 @@ def get_2nd_models():
popd
"""
,
),
Model
(
model_name
=
"sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02"
,
idx
=
25
,
lang
=
"multi_lang"
,
short_name
=
"dolphin_base_ctc"
,
cmd
=
"""
pushd $model_name
rm -rfv test_wavs
ls -lh
popd
"""
,
),
]
return
models
...
...
@@ -304,6 +319,48 @@ def get_1st_models():
popd
"""
,
),
Model
(
model_name
=
"sherpa-onnx-streaming-zipformer-small-ctc-zh-int8-2025-04-01"
,
idx
=
15
,
lang
=
"zh"
,
short_name
=
"int8_small_zipformer"
,
rule_fsts
=
"itn_zh_number.fst"
,
cmd
=
"""
if [ ! -f itn_zh_number.fst ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn_zh_number.fst
fi
pushd $model_name
rm -f bpe.model
rm -rf test_wavs
rm README.md
ls -lh
popd
"""
,
),
Model
(
model_name
=
"sherpa-onnx-streaming-zipformer-small-ctc-zh-2025-04-01"
,
idx
=
16
,
lang
=
"zh"
,
short_name
=
"small_zipformer"
,
rule_fsts
=
"itn_zh_number.fst"
,
cmd
=
"""
if [ ! -f itn_zh_number.fst ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn_zh_number.fst
fi
pushd $model_name
rm -f bpe.model
rm -rf test_wavs
rm README.md
ls -lh
popd
"""
,
),
]
return
models
...
...
@@ -313,19 +370,25 @@ def get_models():
first
=
get_1st_models
()
second
=
get_2nd_models
()
combinations
=
[
(
combinations
=
[]
first_zh
=
[
"sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23"
,
"sherpa-onnx-streaming-zipformer-small-ctc-zh-int8-2025-04-01"
,
"sherpa-onnx-streaming-zipformer-small-ctc-zh-2025-04-01"
,
]
second_zh
=
[
"sherpa-onnx-paraformer-zh-2023-09-14"
,
),
(
"sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23"
,
"icefall-asr-zipformer-wenetspeech-20230615"
,
),
(
"sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23"
,
"sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17"
,
),
"sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02"
,
]
for
first_m
in
first_zh
:
for
second_m
in
second_zh
:
combinations
.
append
((
first_m
,
second_m
))
combinations
+=
[
(
"sherpa-onnx-streaming-zipformer-en-20M-2023-02-17"
,
"sherpa-onnx-whisper-tiny.en"
,
...
...
scripts/apk/generate-asr-apk-script.py
查看文件 @
eee5575
...
...
@@ -263,6 +263,48 @@ def get_models():
popd
"""
,
),
Model
(
model_name
=
"sherpa-onnx-streaming-zipformer-small-ctc-zh-int8-2025-04-01"
,
idx
=
15
,
lang
=
"zh"
,
short_name
=
"int8_small_zipformer"
,
rule_fsts
=
"itn_zh_number.fst"
,
cmd
=
"""
if [ ! -f itn_zh_number.fst ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn_zh_number.fst
fi
pushd $model_name
rm -f bpe.model
rm -rf test_wavs
rm README.md
ls -lh
popd
"""
,
),
Model
(
model_name
=
"sherpa-onnx-streaming-zipformer-small-ctc-zh-2025-04-01"
,
idx
=
16
,
lang
=
"zh"
,
short_name
=
"small_zipformer"
,
rule_fsts
=
"itn_zh_number.fst"
,
cmd
=
"""
if [ ! -f itn_zh_number.fst ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn_zh_number.fst
fi
pushd $model_name
rm -f bpe.model
rm -rf test_wavs
rm README.md
ls -lh
popd
"""
,
),
]
return
models
...
...
scripts/apk/generate-vad-asr-apk-script.py
查看文件 @
eee5575
...
...
@@ -443,6 +443,22 @@ def get_models():
popd
"""
,
),
Model
(
model_name
=
"sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02"
,
idx
=
25
,
lang
=
"multi_lang"
,
lang2
=
"multi_lang"
,
short_name
=
"multi_lang"
,
cmd
=
"""
pushd $model_name
rm -rfv test_wavs
ls -lh
popd
"""
,
),
]
return
models
...
...
sherpa-onnx/java-api/Makefile
查看文件 @
eee5575
...
...
@@ -30,6 +30,7 @@ java_files += OfflineFireRedAsrModelConfig.java
java_files
+=
OfflineMoonshineModelConfig.java
java_files
+=
OfflineNemoEncDecCtcModelConfig.java
java_files
+=
OfflineSenseVoiceModelConfig.java
java_files
+=
OfflineDolphinModelConfig.java
java_files
+=
OfflineModelConfig.java
java_files
+=
OfflineRecognizerConfig.java
java_files
+=
OfflineRecognizerResult.java
...
...
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineDolphinModelConfig.java
0 → 100644
查看文件 @
eee5575
// Copyright 2025 Xiaomi Corporation
package
com
.
k2fsa
.
sherpa
.
onnx
;
public
class
OfflineDolphinModelConfig
{
private
final
String
model
;
private
OfflineDolphinModelConfig
(
Builder
builder
)
{
this
.
model
=
builder
.
model
;
}
public
static
Builder
builder
()
{
return
new
Builder
();
}
public
String
getModel
()
{
return
model
;
}
public
static
class
Builder
{
private
String
model
=
""
;
public
OfflineDolphinModelConfig
build
()
{
return
new
OfflineDolphinModelConfig
(
this
);
}
public
Builder
setModel
(
String
model
)
{
this
.
model
=
model
;
return
this
;
}
}
}
\ No newline at end of file
...
...
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineModelConfig.java
查看文件 @
eee5575
...
...
@@ -10,6 +10,7 @@ public class OfflineModelConfig {
private
final
OfflineMoonshineModelConfig
moonshine
;
private
final
OfflineNemoEncDecCtcModelConfig
nemo
;
private
final
OfflineSenseVoiceModelConfig
senseVoice
;
private
final
OfflineDolphinModelConfig
dolphin
;
private
final
String
teleSpeech
;
private
final
String
tokens
;
private
final
int
numThreads
;
...
...
@@ -28,6 +29,7 @@ public class OfflineModelConfig {
this
.
moonshine
=
builder
.
moonshine
;
this
.
nemo
=
builder
.
nemo
;
this
.
senseVoice
=
builder
.
senseVoice
;
this
.
dolphin
=
builder
.
dolphin
;
this
.
teleSpeech
=
builder
.
teleSpeech
;
this
.
tokens
=
builder
.
tokens
;
this
.
numThreads
=
builder
.
numThreads
;
...
...
@@ -62,6 +64,10 @@ public class OfflineModelConfig {
return
senseVoice
;
}
public
OfflineDolphinModelConfig
getDolphin
()
{
return
dolphin
;
}
public
String
getTokens
()
{
return
tokens
;
}
...
...
@@ -102,6 +108,7 @@ public class OfflineModelConfig {
private
OfflineMoonshineModelConfig
moonshine
=
OfflineMoonshineModelConfig
.
builder
().
build
();
private
OfflineNemoEncDecCtcModelConfig
nemo
=
OfflineNemoEncDecCtcModelConfig
.
builder
().
build
();
private
OfflineSenseVoiceModelConfig
senseVoice
=
OfflineSenseVoiceModelConfig
.
builder
().
build
();
private
OfflineDolphinModelConfig
dolphin
=
OfflineDolphinModelConfig
.
builder
().
build
();
private
String
teleSpeech
=
""
;
private
String
tokens
=
""
;
private
int
numThreads
=
1
;
...
...
@@ -120,6 +127,11 @@ public class OfflineModelConfig {
return
this
;
}
public
Builder
setDolphin
(
OfflineDolphinModelConfig
dolphin
)
{
this
.
dolphin
=
dolphin
;
return
this
;
}
public
Builder
setParaformer
(
OfflineParaformerModelConfig
paraformer
)
{
this
.
paraformer
=
paraformer
;
return
this
;
...
...
sherpa-onnx/jni/offline-recognizer.cc
查看文件 @
eee5575
...
...
@@ -265,6 +265,19 @@ static OfflineRecognizerConfig GetOfflineConfig(JNIEnv *env, jobject config) {
ans
.
model_config
.
nemo_ctc
.
model
=
p
;
env
->
ReleaseStringUTFChars
(
s
,
p
);
// dolphin
fid
=
env
->
GetFieldID
(
model_config_cls
,
"dolphin"
,
"Lcom/k2fsa/sherpa/onnx/OfflineDolphinModelConfig;"
);
jobject
dolphin_config
=
env
->
GetObjectField
(
model_config
,
fid
);
jclass
dolphin_config_cls
=
env
->
GetObjectClass
(
dolphin_config
);
fid
=
env
->
GetFieldID
(
nemo_config_cls
,
"model"
,
"Ljava/lang/String;"
);
s
=
(
jstring
)
env
->
GetObjectField
(
dolphin_config
,
fid
);
p
=
env
->
GetStringUTFChars
(
s
,
nullptr
);
ans
.
model_config
.
dolphin
.
model
=
p
;
env
->
ReleaseStringUTFChars
(
s
,
p
);
fid
=
env
->
GetFieldID
(
model_config_cls
,
"teleSpeech"
,
"Ljava/lang/String;"
);
s
=
(
jstring
)
env
->
GetObjectField
(
model_config
,
fid
);
p
=
env
->
GetStringUTFChars
(
s
,
nullptr
);
...
...
sherpa-onnx/kotlin-api/OfflineRecognizer.kt
查看文件 @
eee5575
...
...
@@ -25,6 +25,10 @@ data class OfflineNemoEncDecCtcModelConfig(
var model: String = "",
)
data class OfflineDolphinModelConfig(
var model: String = "",
)
data class OfflineWhisperModelConfig(
var encoder: String = "",
var decoder: String = "",
...
...
@@ -59,6 +63,7 @@ data class OfflineModelConfig(
var moonshine: OfflineMoonshineModelConfig = OfflineMoonshineModelConfig(),
var nemo: OfflineNemoEncDecCtcModelConfig = OfflineNemoEncDecCtcModelConfig(),
var senseVoice: OfflineSenseVoiceModelConfig = OfflineSenseVoiceModelConfig(),
var dolphin: OfflineDolphinModelConfig = OfflineDolphinModelConfig(),
var teleSpeech: String = "",
var numThreads: Int = 1,
var debug: Boolean = false,
...
...
@@ -481,6 +486,16 @@ fun getOfflineModelConfig(type: Int): OfflineModelConfig? {
tokens = "$modelDir/tokens.txt",
)
}
25 -> {
val modelDir = "sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02"
return OfflineModelConfig(
dolphin = OfflineDolphinModelConfig(
model = "$modelDir/model.int8.onnx",
),
tokens = "$modelDir/tokens.txt",
)
}
}
return null
}
...
...
sherpa-onnx/kotlin-api/OnlineRecognizer.kt
查看文件 @
eee5575
...
...
@@ -374,6 +374,26 @@ fun getModelConfig(type: Int): OnlineModelConfig? {
modelType = "zipformer",
)
}
15 -> {
val modelDir = "sherpa-onnx-streaming-zipformer-small-ctc-zh-int8-2025-04-01"
return OnlineModelConfig(
zipformer2Ctc = OnlineZipformer2CtcModelConfig(
model = "$modelDir/model.int8.onnx",
),
tokens = "$modelDir/tokens.txt",
)
}
16 -> {
val modelDir = "sherpa-onnx-streaming-zipformer-small-ctc-zh-2025-04-01"
return OnlineModelConfig(
zipformer2Ctc = OnlineZipformer2CtcModelConfig(
model = "$modelDir/model.onnx",
),
tokens = "$modelDir/tokens.txt",
)
}
}
return null
}
...
...
请
注册
或
登录
后发表评论