OnlineRecognizer.kt 15.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
package com.k2fsa.sherpa.onnx

import android.content.res.AssetManager

data class EndpointRule(
    var mustContainNonSilence: Boolean,
    var minTrailingSilence: Float,
    var minUtteranceLength: Float,
)

data class EndpointConfig(
    var rule1: EndpointRule = EndpointRule(false, 2.4f, 0.0f),
    var rule2: EndpointRule = EndpointRule(true, 1.4f, 0.0f),
    var rule3: EndpointRule = EndpointRule(false, 0.0f, 20.0f)
)

data class OnlineTransducerModelConfig(
    var encoder: String = "",
    var decoder: String = "",
    var joiner: String = "",
)

data class OnlineParaformerModelConfig(
    var encoder: String = "",
    var decoder: String = "",
)

data class OnlineZipformer2CtcModelConfig(
    var model: String = "",
)

data class OnlineNeMoCtcModelConfig(
    var model: String = "",
)

data class OnlineModelConfig(
    var transducer: OnlineTransducerModelConfig = OnlineTransducerModelConfig(),
    var paraformer: OnlineParaformerModelConfig = OnlineParaformerModelConfig(),
    var zipformer2Ctc: OnlineZipformer2CtcModelConfig = OnlineZipformer2CtcModelConfig(),
    var neMoCtc: OnlineNeMoCtcModelConfig = OnlineNeMoCtcModelConfig(),
    var tokens: String = "",
    var numThreads: Int = 1,
    var debug: Boolean = false,
    var provider: String = "cpu",
    var modelType: String = "",
    var modelingUnit: String = "",
    var bpeVocab: String = "",
)

data class OnlineLMConfig(
    var model: String = "",
    var scale: Float = 0.5f,
)

data class OnlineCtcFstDecoderConfig(
    var graph: String = "",
    var maxActive: Int = 3000,
)


data class OnlineRecognizerConfig(
    var featConfig: FeatureConfig = FeatureConfig(),
    var modelConfig: OnlineModelConfig = OnlineModelConfig(),
    var lmConfig: OnlineLMConfig = OnlineLMConfig(),
    var ctcFstDecoderConfig: OnlineCtcFstDecoderConfig = OnlineCtcFstDecoderConfig(),
    var endpointConfig: EndpointConfig = EndpointConfig(),
    var enableEndpoint: Boolean = true,
    var decodingMethod: String = "greedy_search",
    var maxActivePaths: Int = 4,
    var hotwordsFile: String = "",
    var hotwordsScore: Float = 1.5f,
    var ruleFsts: String = "",
    var ruleFars: String = "",
    var blankPenalty: Float = 0.0f,
)

data class OnlineRecognizerResult(
    val text: String,
    val tokens: Array<String>,
    val timestamps: FloatArray,
    // TODO(fangjun): Add more fields
)

class OnlineRecognizer(
    assetManager: AssetManager? = null,
    val config: OnlineRecognizerConfig,
) {
    private var ptr: Long

    init {
        ptr = if (assetManager != null) {
            newFromAsset(assetManager, config)
        } else {
            newFromFile(config)
        }
    }

    protected fun finalize() {
        if (ptr != 0L) {
            delete(ptr)
            ptr = 0
        }
    }

    fun release() = finalize()

    fun createStream(hotwords: String = ""): OnlineStream {
        val p = createStream(ptr, hotwords)
        return OnlineStream(p)
    }

    fun reset(stream: OnlineStream) = reset(ptr, stream.ptr)
    fun decode(stream: OnlineStream) = decode(ptr, stream.ptr)
    fun isEndpoint(stream: OnlineStream) = isEndpoint(ptr, stream.ptr)
    fun isReady(stream: OnlineStream) = isReady(ptr, stream.ptr)
    fun getResult(stream: OnlineStream): OnlineRecognizerResult {
        val objArray = getResult(ptr, stream.ptr)

        val text = objArray[0] as String
        val tokens = objArray[1] as Array<String>
        val timestamps = objArray[2] as FloatArray

        return OnlineRecognizerResult(text = text, tokens = tokens, timestamps = timestamps)
    }

    private external fun delete(ptr: Long)

    private external fun newFromAsset(
        assetManager: AssetManager,
        config: OnlineRecognizerConfig,
    ): Long

    private external fun newFromFile(
        config: OnlineRecognizerConfig,
    ): Long

    private external fun createStream(ptr: Long, hotwords: String): Long
    private external fun reset(ptr: Long, streamPtr: Long)
    private external fun decode(ptr: Long, streamPtr: Long)
    private external fun isEndpoint(ptr: Long, streamPtr: Long): Boolean
    private external fun isReady(ptr: Long, streamPtr: Long): Boolean
    private external fun getResult(ptr: Long, streamPtr: Long): Array<Any>

    companion object {
        init {
            System.loadLibrary("sherpa-onnx-jni")
        }
    }
}


/*
Please see
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
for a list of pre-trained models.

We only add a few here. Please change the following code
to add your own. (It should be straightforward to add a new model
by following the code)

@param type
0 - sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20 (Bilingual, Chinese + English)
    https://k2-fsa.github.io/sherpa/onnx/pretrained_models/zipformer-transducer-models.html#sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20-bilingual-chinese-english

1 - csukuangfj/sherpa-onnx-lstm-zh-2023-02-20 (Chinese)

    https://k2-fsa.github.io/sherpa/onnx/pretrained_models/lstm-transducer-models.html#csukuangfj-sherpa-onnx-lstm-zh-2023-02-20-chinese

2 - csukuangfj/sherpa-onnx-lstm-en-2023-02-17 (English)
    https://k2-fsa.github.io/sherpa/onnx/pretrained_models/lstm-transducer-models.html#csukuangfj-sherpa-onnx-lstm-en-2023-02-17-english

3,4 - pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615
    https://huggingface.co/pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615
    3 - int8 encoder
    4 - float32 encoder

5 - csukuangfj/sherpa-onnx-streaming-paraformer-bilingual-zh-en
    https://huggingface.co/csukuangfj/sherpa-onnx-streaming-paraformer-bilingual-zh-en

6 - sherpa-onnx-streaming-zipformer-en-2023-06-26
    https://huggingface.co/csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-26

7 - shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14 (French)
    https://huggingface.co/shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14

8 - csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20 (Bilingual, Chinese + English)
    https://huggingface.co/csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20
    encoder int8, decoder/joiner float32

 */
fun getModelConfig(type: Int): OnlineModelConfig? {
    when (type) {
        0 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-99-avg-1.onnx",
                    decoder = "$modelDir/decoder-epoch-99-avg-1.onnx",
                    joiner = "$modelDir/joiner-epoch-99-avg-1.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "zipformer",
            )
        }

        1 -> {
            val modelDir = "sherpa-onnx-lstm-zh-2023-02-20"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-11-avg-1.onnx",
                    decoder = "$modelDir/decoder-epoch-11-avg-1.onnx",
                    joiner = "$modelDir/joiner-epoch-11-avg-1.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "lstm",
            )
        }

        2 -> {
            val modelDir = "sherpa-onnx-lstm-en-2023-02-17"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-99-avg-1.onnx",
                    decoder = "$modelDir/decoder-epoch-99-avg-1.onnx",
                    joiner = "$modelDir/joiner-epoch-99-avg-1.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "lstm",
            )
        }

        3 -> {
            val modelDir = "icefall-asr-zipformer-streaming-wenetspeech-20230615"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/exp/encoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
                    decoder = "$modelDir/exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx",
                    joiner = "$modelDir/exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx",
                ),
                tokens = "$modelDir/data/lang_char/tokens.txt",
                modelType = "zipformer2",
            )
        }

        4 -> {
            val modelDir = "icefall-asr-zipformer-streaming-wenetspeech-20230615"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/exp/encoder-epoch-12-avg-4-chunk-16-left-128.onnx",
                    decoder = "$modelDir/exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx",
                    joiner = "$modelDir/exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx",
                ),
                tokens = "$modelDir/data/lang_char/tokens.txt",
                modelType = "zipformer2",
            )
        }

        5 -> {
            val modelDir = "sherpa-onnx-streaming-paraformer-bilingual-zh-en"
            return OnlineModelConfig(
                paraformer = OnlineParaformerModelConfig(
                    encoder = "$modelDir/encoder.int8.onnx",
                    decoder = "$modelDir/decoder.int8.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "paraformer",
            )
        }

        6 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-en-2023-06-26"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-99-avg-1-chunk-16-left-128.int8.onnx",
                    decoder = "$modelDir/decoder-epoch-99-avg-1-chunk-16-left-128.onnx",
                    joiner = "$modelDir/joiner-epoch-99-avg-1-chunk-16-left-128.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "zipformer2",
            )
        }

        7 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-fr-2023-04-14"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-29-avg-9-with-averaged-model.int8.onnx",
                    decoder = "$modelDir/decoder-epoch-29-avg-9-with-averaged-model.onnx",
                    joiner = "$modelDir/joiner-epoch-29-avg-9-with-averaged-model.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "zipformer",
            )
        }

        8 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-99-avg-1.int8.onnx",
                    decoder = "$modelDir/decoder-epoch-99-avg-1.onnx",
                    joiner = "$modelDir/joiner-epoch-99-avg-1.int8.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "zipformer",
            )
        }

        9 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-99-avg-1.int8.onnx",
                    decoder = "$modelDir/decoder-epoch-99-avg-1.onnx",
                    joiner = "$modelDir/joiner-epoch-99-avg-1.int8.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "zipformer",
            )
        }

        10 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-en-20M-2023-02-17"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-99-avg-1.int8.onnx",
                    decoder = "$modelDir/decoder-epoch-99-avg-1.onnx",
                    joiner = "$modelDir/joiner-epoch-99-avg-1.int8.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "zipformer",
            )
        }

        11 -> {
            val modelDir = "sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-80ms"
            return OnlineModelConfig(
                neMoCtc = OnlineNeMoCtcModelConfig(
                    model = "$modelDir/model.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
            )
        }

        12 -> {
            val modelDir = "sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-480ms"
            return OnlineModelConfig(
                neMoCtc = OnlineNeMoCtcModelConfig(
                    model = "$modelDir/model.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
            )
        }

        13 -> {
            val modelDir = "sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-1040ms"
            return OnlineModelConfig(
                neMoCtc = OnlineNeMoCtcModelConfig(
                    model = "$modelDir/model.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
            )
        }

        14 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-korean-2024-06-16"
            return OnlineModelConfig(
                transducer = OnlineTransducerModelConfig(
                    encoder = "$modelDir/encoder-epoch-99-avg-1.int8.onnx",
                    decoder = "$modelDir/decoder-epoch-99-avg-1.onnx",
                    joiner = "$modelDir/joiner-epoch-99-avg-1.int8.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
                modelType = "zipformer",
            )
        }

        15 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-small-ctc-zh-int8-2025-04-01"
            return OnlineModelConfig(
                zipformer2Ctc = OnlineZipformer2CtcModelConfig(
                    model = "$modelDir/model.int8.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
            )
        }

        16 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-small-ctc-zh-2025-04-01"
            return OnlineModelConfig(
                zipformer2Ctc = OnlineZipformer2CtcModelConfig(
                    model = "$modelDir/model.onnx",
                ),
                tokens = "$modelDir/tokens.txt",
            )
        }
    }
    return null
}

/*
Please see
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
for a list of pre-trained models.

We only add a few here. Please change the following code
to add your own LM model. (It should be straightforward to train a new NN LM model
by following the code, https://github.com/k2-fsa/icefall/blob/master/icefall/rnn_lm/train.py)

@param type
0 - sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20 (Bilingual, Chinese + English)
    https://k2-fsa.github.io/sherpa/onnx/pretrained_models/zipformer-transducer-models.html#sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20-bilingual-chinese-english
 */
fun getOnlineLMConfig(type: Int): OnlineLMConfig {
    when (type) {
        0 -> {
            val modelDir = "sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20"
            return OnlineLMConfig(
                model = "$modelDir/with-state-epoch-99-avg-1.int8.onnx",
                scale = 0.5f,
            )
        }
    }
    return OnlineLMConfig()
}

fun getEndpointConfig(): EndpointConfig {
    return EndpointConfig(
        rule1 = EndpointRule(false, 2.4f, 0.0f),
        rule2 = EndpointRule(true, 1.4f, 0.0f),
        rule3 = EndpointRule(false, 0.0f, 20.0f)
    )
}