Fangjun Kuang
Committed by GitHub

Add C/CXX/JavaScript API for NeMo Canary models (#2357)

This PR introduces support for NeMo Canary models across C, C++, and JavaScript APIs 
by adding new Canary configuration structures, updating bindings, extending examples,
and enhancing CI workflows.

- Add OfflineCanaryModelConfig to all language bindings (C, C++, JS, ETS).
- Implement SetConfig methods and NAPI wrappers for updating recognizer config at runtime.
- Update examples and CI scripts to demonstrate and test NeMo Canary model usage.
... ... @@ -10,6 +10,16 @@ arch=$(node -p "require('os').arch()")
platform=$(node -p "require('os').platform()")
node_version=$(node -p "process.versions.node.split('.')[0]")
echo "----------non-streaming ASR NeMo Canary----------"
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
node ./test_asr_non_streaming_nemo_canary.js
rm -rf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8
echo "----------non-streaming ASR Zipformer CTC----------"
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-ctc-zh-int8-2025-07-03.tar.bz2
... ...
... ... @@ -9,6 +9,14 @@ git status
ls -lh
ls -lh node_modules
# asr with offline nemo canary
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
node ./test-offline-nemo-canary.js
rm -rf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8
# asr with offline zipformer ctc
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-ctc-zh-int8-2025-07-03.tar.bz2
... ...
... ... @@ -77,16 +77,6 @@ time $EXE \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
log "test int8"
time $EXE \
--debug=1 \
--zipformer2-ctc-model=$repo/ctc-epoch-20-avg-1-chunk-16-left-128.int8.onnx \
--tokens=$repo/tokens.txt \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
rm -rf $repo
log "------------------------------------------------------------"
... ...
... ... @@ -127,6 +127,36 @@ jobs:
rm -rf dict lexicon.txt test-hr.wav replace.fst
rm -v $name
- name: Test NeMo Canary
shell: bash
run: |
name=nemo-canary-c-api
gcc -o $name ./c-api-examples/$name.c \
-I ./build/install/include \
-L ./build/install/lib/ \
-l sherpa-onnx-c-api \
-l onnxruntime
ls -lh $name
if [[ ${{ matrix.os }} == ubuntu-latest || ${{ matrix.os }} == ubuntu-22.04-arm ]]; then
ldd ./$name
echo "----"
readelf -d ./$name
fi
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
export LD_LIBRARY_PATH=$PWD/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$PWD/build/install/lib:$DYLD_LIBRARY_PATH
./$name
rm $name
rm -rf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8
- name: Test Dolphin CTC
shell: bash
run: |
... ...
... ... @@ -87,6 +87,40 @@ jobs:
otool -L ./install/lib/libsherpa-onnx-cxx-api.dylib
fi
- name: Test NeMo Canary
shell: bash
run: |
name=nemo-canary-cxx-api
g++ -std=c++17 -o $name ./cxx-api-examples/$name.cc \
-I ./build/install/include \
-L ./build/install/lib/ \
-l sherpa-onnx-cxx-api \
-l sherpa-onnx-c-api \
-l onnxruntime
ls -lh $name
if [[ ${{ matrix.os }} == ubuntu-latest || ${{ matrix.os }} == ubuntu-22.04-arm ]]; then
ldd ./$name
echo "----"
readelf -d ./$name
fi
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
ls -lh sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8
echo "---"
export LD_LIBRARY_PATH=$PWD/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$PWD/build/install/lib:$DYLD_LIBRARY_PATH
./$name
rm -rf sherpa-onnx-nemo-canary-*
rm -v ./$name
- name: Test streaming zipformer with Homophone replacer
shell: bash
run: |
... ...
... ... @@ -53,6 +53,9 @@ target_link_libraries(whisper-c-api sherpa-onnx-c-api)
add_executable(fire-red-asr-c-api fire-red-asr-c-api.c)
target_link_libraries(fire-red-asr-c-api sherpa-onnx-c-api)
add_executable(nemo-canary-c-api nemo-canary-c-api.c)
target_link_libraries(nemo-canary-c-api sherpa-onnx-c-api)
add_executable(sense-voice-c-api sense-voice-c-api.c)
target_link_libraries(sense-voice-c-api sherpa-onnx-c-api)
... ...
// c-api-examples/nemo-canary-c-api.c
//
// Copyright (c) 2025 Xiaomi Corporation
// We assume you have pre-downloaded the Nemo Canary model
// from https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
// An example is given below:
//
// clang-format off
//
// wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
// tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
// rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
//
// clang-format on
//
// see https://k2-fsa.github.io/sherpa/onnx/nemo/canary.html
// for details
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sherpa-onnx/c-api/c-api.h"
int32_t main() {
const char *wav_filename =
"./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/test_wavs/de.wav";
const char *encoder_filename =
"sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/encoder.int8.onnx";
const char *decoder_filename =
"sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/decoder.int8.onnx";
const char *tokens_filename =
"sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/tokens.txt";
const char *provider = "cpu";
const SherpaOnnxWave *wave = SherpaOnnxReadWave(wav_filename);
if (wave == NULL) {
fprintf(stderr, "Failed to read %s\n", wav_filename);
return -1;
}
// Offline model config
SherpaOnnxOfflineModelConfig offline_model_config;
memset(&offline_model_config, 0, sizeof(offline_model_config));
// set debug to 1 to view more logs
offline_model_config.debug = 0;
offline_model_config.num_threads = 1;
offline_model_config.provider = provider;
offline_model_config.tokens = tokens_filename;
offline_model_config.canary.encoder = encoder_filename;
offline_model_config.canary.decoder = decoder_filename;
// so it output punctuations and cases
offline_model_config.canary.use_pnc = 1;
offline_model_config.canary.src_lang = "de";
// since there is a German audio, you can set tgt_lang to en or de
offline_model_config.canary.tgt_lang = "en";
// Recognizer config
SherpaOnnxOfflineRecognizerConfig recognizer_config;
memset(&recognizer_config, 0, sizeof(recognizer_config));
recognizer_config.decoding_method = "greedy_search";
recognizer_config.model_config = offline_model_config;
const SherpaOnnxOfflineRecognizer *recognizer =
SherpaOnnxCreateOfflineRecognizer(&recognizer_config);
if (recognizer == NULL) {
fprintf(stderr, "Please check your config!\n");
SherpaOnnxFreeWave(wave);
return -1;
}
const SherpaOnnxOfflineStream *stream =
SherpaOnnxCreateOfflineStream(recognizer);
SherpaOnnxAcceptWaveformOffline(stream, wave->sample_rate, wave->samples,
wave->num_samples);
SherpaOnnxDecodeOfflineStream(recognizer, stream);
const SherpaOnnxOfflineRecognizerResult *result =
SherpaOnnxGetOfflineStreamResult(stream);
fprintf(stderr, "Decoded text (English): %s\n", result->text);
SherpaOnnxDestroyOfflineRecognizerResult(result);
SherpaOnnxDestroyOfflineStream(stream);
// now output German text
recognizer_config.model_config.canary.tgt_lang = "de";
SherpaOnnxOfflineRecognizerSetConfig(recognizer, &recognizer_config);
stream = SherpaOnnxCreateOfflineStream(recognizer);
SherpaOnnxAcceptWaveformOffline(stream, wave->sample_rate, wave->samples,
wave->num_samples);
SherpaOnnxDecodeOfflineStream(recognizer, stream);
result = SherpaOnnxGetOfflineStreamResult(stream);
fprintf(stderr, "Decoded text (German): %s\n", result->text);
SherpaOnnxDestroyOfflineRecognizerResult(result);
SherpaOnnxDestroyOfflineStream(stream);
SherpaOnnxDestroyOfflineRecognizer(recognizer);
SherpaOnnxFreeWave(wave);
return 0;
}
... ...
... ... @@ -54,7 +54,7 @@ int32_t main() {
"DEV_T0000000000.wav";
const char *model_filename =
"sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/"
"ctc-epoch-20-avg-1-chunk-16-left-128.int8.onnx";
"ctc-epoch-20-avg-1-chunk-16-left-128.onnx";
const char *tokens_filename =
"sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/tokens.txt";
const char *provider = "cpu";
... ...
... ... @@ -27,6 +27,9 @@ target_link_libraries(moonshine-cxx-api sherpa-onnx-cxx-api)
add_executable(sense-voice-cxx-api ./sense-voice-cxx-api.cc)
target_link_libraries(sense-voice-cxx-api sherpa-onnx-cxx-api)
add_executable(nemo-canary-cxx-api ./nemo-canary-cxx-api.cc)
target_link_libraries(nemo-canary-cxx-api sherpa-onnx-cxx-api)
if(SHERPA_ONNX_ENABLE_PORTAUDIO)
add_executable(sense-voice-simulate-streaming-microphone-cxx-api
./sense-voice-simulate-streaming-microphone-cxx-api.cc
... ...
// cxx-api-examples/nemo-canary-cxx-api.cc
//
// Copyright (c) 2025 Xiaomi Corporation
//
// This file demonstrates how to use NeMo Canary models with
// sherpa-onnx's C++ API.
//
// clang-format off
//
// wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
// tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
// rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
//
// clang-format on
//
// see https://k2-fsa.github.io/sherpa/onnx/nemo/canary.html
// for details
#include <chrono> // NOLINT
#include <iostream>
#include <string>
#include "sherpa-onnx/c-api/cxx-api.h"
int32_t main() {
using namespace sherpa_onnx::cxx; // NOLINT
OfflineRecognizerConfig config;
config.model_config.canary.encoder =
"sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/encoder.int8.onnx";
config.model_config.canary.decoder =
"sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/decoder.int8.onnx";
// our input audio is German, so we set src_lang to "de"
config.model_config.canary.src_lang = "de";
// we can set tgt_lang either to de or en in this specific case
config.model_config.canary.tgt_lang = "en";
config.model_config.tokens =
"sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/tokens.txt";
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
std::cout << "Loading model done\n";
std::string wave_filename =
"./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/test_wavs/de.wav";
Wave wave = ReadWave(wave_filename);
if (wave.samples.empty()) {
std::cerr << "Failed to read: '" << wave_filename << "'\n";
return -1;
}
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recognizer.Decode(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin)
.count() /
1000.;
float duration = wave.samples.size() / static_cast<float>(wave.sample_rate);
float rtf = elapsed_seconds / duration;
std::cout << "text (English): " << result.text << "\n";
printf("Number of threads: %d\n", config.model_config.num_threads);
printf("Duration: %.3fs\n", duration);
printf("Elapsed seconds: %.3fs\n", elapsed_seconds);
printf("(Real time factor) RTF = %.3f / %.3f = %.3f\n", elapsed_seconds,
duration, rtf);
// now output text in German
config.model_config.canary.tgt_lang = "de";
recognizer.SetConfig(config);
stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recognizer.Decode(&stream);
result = recognizer.GetResult(&stream);
std::cout << "text (German): " << result.text << "\n";
return 0;
}
... ...
... ... @@ -7,6 +7,7 @@ export { Samples,
OfflineStream,
FeatureConfig,
HomophoneReplacerConfig,
OfflineCanaryModelConfig,
OfflineDolphinModelConfig,
OfflineTransducerModelConfig,
OfflineParaformerModelConfig,
... ...
... ... @@ -93,6 +93,27 @@ static SherpaOnnxOfflineNemoEncDecCtcModelConfig GetOfflineNeMoCtcModelConfig(
return c;
}
static SherpaOnnxOfflineCanaryModelConfig GetOfflineCanaryModelConfig(
Napi::Object obj) {
SherpaOnnxOfflineCanaryModelConfig c;
memset(&c, 0, sizeof(c));
c.use_pnc = 1; // Align default with JS default
if (!obj.Has("canary") || !obj.Get("canary").IsObject()) {
return c;
}
Napi::Object o = obj.Get("canary").As<Napi::Object>();
SHERPA_ONNX_ASSIGN_ATTR_STR(encoder, encoder);
SHERPA_ONNX_ASSIGN_ATTR_STR(decoder, decoder);
SHERPA_ONNX_ASSIGN_ATTR_STR(src_lang, srcLang);
SHERPA_ONNX_ASSIGN_ATTR_STR(tgt_lang, tgtLang);
SHERPA_ONNX_ASSIGN_ATTR_INT32(use_pnc, usePnc);
return c;
}
static SherpaOnnxOfflineWhisperModelConfig GetOfflineWhisperModelConfig(
Napi::Object obj) {
SherpaOnnxOfflineWhisperModelConfig c;
... ... @@ -203,6 +224,7 @@ static SherpaOnnxOfflineModelConfig GetOfflineModelConfig(Napi::Object obj) {
c.fire_red_asr = GetOfflineFireRedAsrModelConfig(o);
c.dolphin = GetOfflineDolphinModelConfig(o);
c.zipformer_ctc = GetOfflineZipformerCtcModelConfig(o);
c.canary = GetOfflineCanaryModelConfig(o);
SHERPA_ONNX_ASSIGN_ATTR_STR(tokens, tokens);
SHERPA_ONNX_ASSIGN_ATTR_INT32(num_threads, numThreads);
... ... @@ -241,39 +263,7 @@ static SherpaOnnxOfflineLMConfig GetOfflineLMConfig(Napi::Object obj) {
return c;
}
static Napi::External<SherpaOnnxOfflineRecognizer>
CreateOfflineRecognizerWrapper(const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
#if __OHOS__
// the last argument is the NativeResourceManager
if (info.Length() != 2) {
std::ostringstream os;
os << "Expect only 2 arguments. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return {};
}
#else
if (info.Length() != 1) {
std::ostringstream os;
os << "Expect only 1 argument. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return {};
}
#endif
if (!info[0].IsObject()) {
Napi::TypeError::New(env, "Expect an object as the argument")
.ThrowAsJavaScriptException();
return {};
}
Napi::Object o = info[0].As<Napi::Object>();
static SherpaOnnxOfflineRecognizerConfig ParseConfig(Napi::Object o) {
SherpaOnnxOfflineRecognizerConfig c;
memset(&c, 0, sizeof(c));
c.feat_config = GetFeatureConfig(o);
... ... @@ -289,19 +279,10 @@ CreateOfflineRecognizerWrapper(const Napi::CallbackInfo &info) {
SHERPA_ONNX_ASSIGN_ATTR_STR(rule_fars, ruleFars);
SHERPA_ONNX_ASSIGN_ATTR_FLOAT(blank_penalty, blankPenalty);
#if __OHOS__
std::unique_ptr<NativeResourceManager,
decltype(&OH_ResourceManager_ReleaseNativeResourceManager)>
mgr(OH_ResourceManager_InitNativeResourceManager(env, info[1]),
&OH_ResourceManager_ReleaseNativeResourceManager);
const SherpaOnnxOfflineRecognizer *recognizer =
SherpaOnnxCreateOfflineRecognizerOHOS(&c, mgr.get());
#else
const SherpaOnnxOfflineRecognizer *recognizer =
SherpaOnnxCreateOfflineRecognizer(&c);
#endif
return c;
}
static void FreeConfig(const SherpaOnnxOfflineRecognizerConfig &c) {
SHERPA_ONNX_DELETE_C_STR(c.model_config.transducer.encoder);
SHERPA_ONNX_DELETE_C_STR(c.model_config.transducer.decoder);
SHERPA_ONNX_DELETE_C_STR(c.model_config.transducer.joiner);
... ... @@ -331,6 +312,11 @@ CreateOfflineRecognizerWrapper(const Napi::CallbackInfo &info) {
SHERPA_ONNX_DELETE_C_STR(c.model_config.dolphin.model);
SHERPA_ONNX_DELETE_C_STR(c.model_config.zipformer_ctc.model);
SHERPA_ONNX_DELETE_C_STR(c.model_config.canary.encoder);
SHERPA_ONNX_DELETE_C_STR(c.model_config.canary.decoder);
SHERPA_ONNX_DELETE_C_STR(c.model_config.canary.src_lang);
SHERPA_ONNX_DELETE_C_STR(c.model_config.canary.tgt_lang);
SHERPA_ONNX_DELETE_C_STR(c.model_config.tokens);
SHERPA_ONNX_DELETE_C_STR(c.model_config.provider);
SHERPA_ONNX_DELETE_C_STR(c.model_config.model_type);
... ... @@ -347,6 +333,57 @@ CreateOfflineRecognizerWrapper(const Napi::CallbackInfo &info) {
SHERPA_ONNX_DELETE_C_STR(c.hr.dict_dir);
SHERPA_ONNX_DELETE_C_STR(c.hr.lexicon);
SHERPA_ONNX_DELETE_C_STR(c.hr.rule_fsts);
}
static Napi::External<SherpaOnnxOfflineRecognizer>
CreateOfflineRecognizerWrapper(const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
#if __OHOS__
// the last argument is the NativeResourceManager
if (info.Length() != 2) {
std::ostringstream os;
os << "Expect only 2 arguments. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return {};
}
#else
if (info.Length() != 1) {
std::ostringstream os;
os << "Expect only 1 argument. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return {};
}
#endif
if (!info[0].IsObject()) {
Napi::TypeError::New(env, "Expect an object as the argument")
.ThrowAsJavaScriptException();
return {};
}
Napi::Object o = info[0].As<Napi::Object>();
SherpaOnnxOfflineRecognizerConfig c = ParseConfig(o);
#if __OHOS__
std::unique_ptr<NativeResourceManager,
decltype(&OH_ResourceManager_ReleaseNativeResourceManager)>
mgr(OH_ResourceManager_InitNativeResourceManager(env, info[1]),
&OH_ResourceManager_ReleaseNativeResourceManager);
const SherpaOnnxOfflineRecognizer *recognizer =
SherpaOnnxCreateOfflineRecognizerOHOS(&c, mgr.get());
#else
const SherpaOnnxOfflineRecognizer *recognizer =
SherpaOnnxCreateOfflineRecognizer(&c);
#endif
FreeConfig(c);
if (!recognizer) {
Napi::TypeError::New(env, "Please check your config!")
... ... @@ -470,6 +507,43 @@ static void AcceptWaveformOfflineWrapper(const Napi::CallbackInfo &info) {
#endif
}
static void OfflineRecognizerSetConfigWrapper(const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
if (info.Length() != 2) {
std::ostringstream os;
os << "Expect only 2 arguments. Given: " << info.Length();
Napi::TypeError::New(env, os.str()).ThrowAsJavaScriptException();
return;
}
if (!info[0].IsExternal()) {
Napi::TypeError::New(env,
"Argument 0 should be an offline recognizer pointer.")
.ThrowAsJavaScriptException();
return;
}
if (!info[1].IsObject()) {
Napi::TypeError::New(env, "Expect an object as the second argument")
.ThrowAsJavaScriptException();
return;
}
Napi::Object o = info[1].As<Napi::Object>();
SherpaOnnxOfflineRecognizerConfig c = ParseConfig(o);
const SherpaOnnxOfflineRecognizer *recognizer =
info[0].As<Napi::External<SherpaOnnxOfflineRecognizer>>().Data();
SherpaOnnxOfflineRecognizerSetConfig(recognizer, &c);
FreeConfig(c);
}
static void DecodeOfflineStreamWrapper(const Napi::CallbackInfo &info) {
Napi::Env env = info.Env();
if (info.Length() != 2) {
... ... @@ -548,6 +622,9 @@ void InitNonStreamingAsr(Napi::Env env, Napi::Object exports) {
exports.Set(Napi::String::New(env, "decodeOfflineStream"),
Napi::Function::New(env, DecodeOfflineStreamWrapper));
exports.Set(Napi::String::New(env, "offlineRecognizerSetConfig"),
Napi::Function::New(env, OfflineRecognizerSetConfigWrapper));
exports.Set(Napi::String::New(env, "getOfflineStreamResultAsJson"),
Napi::Function::New(env, GetOfflineStreamResultAsJsonWrapper));
}
... ...
... ... @@ -22,6 +22,7 @@ export const voiceActivityDetectorFlush: (handle: object) => void;
export const createOfflineRecognizer: (config: object, mgr?: object) => object;
export const createOfflineStream: (handle: object) => object;
export const offlineRecognizerSetConfig: (handle: object, config: object) => void;
export const acceptWaveformOffline: (handle: object, audio: object) => void;
export const decodeOfflineStream: (handle: object, streamHandle: object) => void;
export const getOfflineStreamResultAsJson: (streamHandle: object) => string;
... ...
... ... @@ -4,6 +4,7 @@ import {
createOfflineStream,
decodeOfflineStream,
getOfflineStreamResultAsJson,
offlineRecognizerSetConfig,
} from 'libsherpa_onnx.so';
export interface Samples {
... ... @@ -67,6 +68,14 @@ export class OfflineWhisperModelConfig {
public tailPaddings: number = -1;
}
export class OfflineCanaryModelConfig {
public encoder: string = '';
public decoder: string = '';
public srcLang: string = '';
public tgtLang: string = '';
public usePnc: number = 1;
}
export class OfflineTdnnModelConfig {
public model: string = '';
}
... ... @@ -102,6 +111,7 @@ export class OfflineModelConfig {
public moonshine: OfflineMoonshineModelConfig = new OfflineMoonshineModelConfig();
public dolphin: OfflineDolphinModelConfig = new OfflineDolphinModelConfig();
public zipformerCtc: OfflineZipformerCtcModelConfig = new OfflineZipformerCtcModelConfig();
public canary: OfflineCanaryModelConfig = new OfflineCanaryModelConfig();
}
export class OfflineLMConfig {
... ... @@ -151,6 +161,10 @@ export class OfflineRecognizer {
this.config = config
}
setConfig(config: OfflineRecognizerConfig) {
offlineRecognizerSetConfig(this.handle, config);
}
createStream(): OfflineStream {
const handle: object = createOfflineStream(this.handle);
return new OfflineStream(handle);
... ...
... ... @@ -123,6 +123,7 @@ The following tables list the examples in this folder.
|[./test_asr_non_streaming_moonshine.js](./test_asr_non_streaming_moonshine.js)|Non-streaming speech recognition from a file using [Moonshine](https://github.com/usefulsensors/moonshine)|
|[./test_vad_with_non_streaming_asr_moonshine.js](./test_vad_with_non_streaming_asr_moonshine.js)| Non-streaming speech recognition from a file using [Moonshine](https://github.com/usefulsensors/moonshine) + [Silero VAD](https://github.com/snakers4/silero-vad)|
|[./test_asr_non_streaming_nemo_ctc.js](./test_asr_non_streaming_nemo_ctc.js)|Non-streaming speech recognition from a file using a [NeMo](https://github.com/NVIDIA/NeMo) CTC model with greedy search|
|[./test_asr_non_streaming_nemo_canary.js](./test_asr_non_streaming_nemo_canary.js)|Non-streaming speech recognition from a file using a [NeMo](https://github.com/NVIDIA/NeMo) [Canary](https://k2-fsa.github.io/sherpa/onnx/nemo/canary.html#sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8-english-spanish-german-french) model|
|[./test_asr_non_streaming_zipformer_ctc.js](./test_asr_non_streaming_zipformer_ctc.js)|Non-streaming speech recognition from a file using a Zipformer CTC model with greedy search|
|[./test_asr_non_streaming_nemo_parakeet_tdt_v2.js](./test_asr_non_streaming_nemo_parakeet_tdt_v2.js)|Non-streaming speech recognition from a file using a [NeMo](https://github.com/NVIDIA/NeMo) [parakeet-tdt-0.6b-v2](https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/nemo-transducer-models.html#sherpa-onnx-nemo-parakeet-tdt-0-6b-v2-int8-english) model with greedy search|
|[./test_asr_non_streaming_dolphin_ctc.js](./test_asr_non_streaming_dolphin_ctc.js)|Non-streaming speech recognition from a file using a [Dolphinhttps://github.com/DataoceanAI/Dolphin]) CTC model with greedy search|
... ... @@ -389,6 +390,16 @@ npm install naudiodon2
node ./test_vad_asr_non_streaming_zipformer_ctc_microphone.js
```
### Non-streaming speech recognition with NeMo Canary models
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
node ./test_asr_non_streaming_nemo_canary.js
```
### Non-streaming speech recognition with NeMo CTC models
```bash
... ...
// Copyright (c) 2024 Xiaomi Corporation
const sherpa_onnx = require('sherpa-onnx-node');
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'featConfig': {
'sampleRate': 16000,
'featureDim': 80,
},
'modelConfig': {
'canary': {
'encoder':
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/encoder.int8.onnx',
'decoder':
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/decoder.int8.onnx',
'srcLang': 'en',
'tgtLang': 'en',
'usePnc': 1,
},
'tokens':
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/tokens.txt',
'numThreads': 2,
'provider': 'cpu',
'debug': 0,
}
};
const waveFilename =
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/test_wavs/en.wav';
const recognizer = new sherpa_onnx.OfflineRecognizer(config);
console.log('Started')
let start = Date.now();
let stream = recognizer.createStream();
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform({sampleRate: wave.sampleRate, samples: wave.samples});
recognizer.decode(stream);
let result = recognizer.getResult(stream)
let stop = Date.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'seconds')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'seconds')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
console.log(waveFilename)
console.log('result (English)\n', result)
stream = recognizer.createStream();
stream.acceptWaveform({sampleRate: wave.sampleRate, samples: wave.samples});
recognizer.config.modelConfig.canary.tgtLang = 'de';
recognizer.setConfig(recognizer.config);
recognizer.decode(stream);
result = recognizer.getResult(stream)
console.log('result (German)\n', result)
... ...
... ... @@ -63,7 +63,7 @@ for text-to-speech.
You can use the following command to run it:
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/kokoro-en-v0_19.tar.bz2
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/kokoro-en-v0_19.tar.bz2
tar xf kokoro-en-v0_19.tar.bz2
rm kokoro-en-v0_19.tar.bz2
... ... @@ -154,6 +154,22 @@ rm sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
node ./test-offline-dolphin-ctc.js
```
## ./test-offline-nemo-canary.js
[./test-offline-nemo-canary.js](./test-offline-nemo-canary.js) demonstrates
how to decode a file with a NeMo Canary model. In the code we use
[sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8](https://k2-fsa.github.io/sherpa/onnx/nemo/canary.html#sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8-english-spanish-german-french).
You can use the following command to run it:
```bash
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
tar xvf sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
rm sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8.tar.bz2
node ./test-offline-nemo-canary.js
```
## ./test-offline-zipformer-ctc.js
[./test-offline-zipformer-ctc.js](./test-offline-zipformer-ctc.js) demonstrates
... ...
// Copyright (c) 2025 Xiaomi Corporation (authors: Fangjun Kuang)
//
const fs = require('fs');
const {Readable} = require('stream');
const wav = require('wav');
const sherpa_onnx = require('sherpa-onnx');
function createOfflineRecognizer() {
let config = {
modelConfig: {
canary: {
encoder:
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/encoder.int8.onnx',
decoder:
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/decoder.int8.onnx',
srcLang: 'en',
tgtLang: 'en',
usePnc: 1,
},
debug: 0,
tokens:
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/tokens.txt',
}
};
return sherpa_onnx.createOfflineRecognizer(config);
}
const recognizer = createOfflineRecognizer();
let stream = recognizer.createStream();
const waveFilename =
'./sherpa-onnx-nemo-canary-180m-flash-en-es-de-fr-int8/test_wavs/en.wav';
const wave = sherpa_onnx.readWave(waveFilename);
stream.acceptWaveform(wave.sampleRate, wave.samples);
recognizer.decode(stream);
let text = recognizer.getResult(stream).text;
console.log(`text in English: ${text}`);
stream.free();
// now output German text
recognizer.config.modelConfig.canary.tgtLang = 'de';
recognizer.setConfig(recognizer.config);
stream = recognizer.createStream();
stream.acceptWaveform(wave.sampleRate, wave.samples);
recognizer.decode(stream);
text = recognizer.getResult(stream).text;
console.log(`text in German: ${text}`);
stream.free();
recognizer.free();
... ...
... ... @@ -24,6 +24,10 @@ class OfflineRecognizer {
return new OfflineStream(handle);
}
setConfig(config) {
addon.offlineRecognizerSetConfig(this.handle, config);
}
decode(stream) {
addon.decodeOfflineStream(this.handle, stream.handle);
}
... ...
... ... @@ -487,6 +487,21 @@ static sherpa_onnx::OfflineRecognizerConfig GetOfflineRecognizerConfig(
recognizer_config.model_config.zipformer_ctc.model =
SHERPA_ONNX_OR(config->model_config.zipformer_ctc.model, "");
recognizer_config.model_config.canary.encoder =
SHERPA_ONNX_OR(config->model_config.canary.encoder, "");
recognizer_config.model_config.canary.decoder =
SHERPA_ONNX_OR(config->model_config.canary.decoder, "");
recognizer_config.model_config.canary.src_lang =
SHERPA_ONNX_OR(config->model_config.canary.src_lang, "");
recognizer_config.model_config.canary.tgt_lang =
SHERPA_ONNX_OR(config->model_config.canary.tgt_lang, "");
recognizer_config.model_config.canary.use_pnc =
config->model_config.canary.use_pnc;
recognizer_config.lm_config.model =
SHERPA_ONNX_OR(config->lm_config.model, "");
recognizer_config.lm_config.scale =
... ...
... ... @@ -420,6 +420,14 @@ SHERPA_ONNX_API typedef struct SherpaOnnxOfflineWhisperModelConfig {
int32_t tail_paddings;
} SherpaOnnxOfflineWhisperModelConfig;
SHERPA_ONNX_API typedef struct SherpaOnnxOfflineCanaryModelConfig {
const char *encoder;
const char *decoder;
const char *src_lang;
const char *tgt_lang;
int32_t use_pnc;
} SherpaOnnxOfflineCanaryModelConfig;
SHERPA_ONNX_API typedef struct SherpaOnnxOfflineFireRedAsrModelConfig {
const char *encoder;
const char *decoder;
... ... @@ -479,6 +487,7 @@ SHERPA_ONNX_API typedef struct SherpaOnnxOfflineModelConfig {
SherpaOnnxOfflineFireRedAsrModelConfig fire_red_asr;
SherpaOnnxOfflineDolphinModelConfig dolphin;
SherpaOnnxOfflineZipformerCtcModelConfig zipformer_ctc;
SherpaOnnxOfflineCanaryModelConfig canary;
} SherpaOnnxOfflineModelConfig;
SHERPA_ONNX_API typedef struct SherpaOnnxOfflineRecognizerConfig {
... ...
... ... @@ -193,7 +193,7 @@ void OfflineStream::AcceptWaveform(int32_t sample_rate, const float *samples,
SherpaOnnxAcceptWaveformOffline(p_, sample_rate, samples, n);
}
OfflineRecognizer OfflineRecognizer::Create(
static SherpaOnnxOfflineRecognizerConfig Convert(
const OfflineRecognizerConfig &config) {
struct SherpaOnnxOfflineRecognizerConfig c;
memset(&c, 0, sizeof(c));
... ... @@ -256,6 +256,12 @@ OfflineRecognizer OfflineRecognizer::Create(
c.model_config.zipformer_ctc.model =
config.model_config.zipformer_ctc.model.c_str();
c.model_config.canary.encoder = config.model_config.canary.encoder.c_str();
c.model_config.canary.decoder = config.model_config.canary.decoder.c_str();
c.model_config.canary.src_lang = config.model_config.canary.src_lang.c_str();
c.model_config.canary.tgt_lang = config.model_config.canary.tgt_lang.c_str();
c.model_config.canary.use_pnc = config.model_config.canary.use_pnc;
c.lm_config.model = config.lm_config.model.c_str();
c.lm_config.scale = config.lm_config.scale;
... ... @@ -273,10 +279,22 @@ OfflineRecognizer OfflineRecognizer::Create(
c.hr.lexicon = config.hr.lexicon.c_str();
c.hr.rule_fsts = config.hr.rule_fsts.c_str();
return c;
}
OfflineRecognizer OfflineRecognizer::Create(
const OfflineRecognizerConfig &config) {
auto c = Convert(config);
auto p = SherpaOnnxCreateOfflineRecognizer(&c);
return OfflineRecognizer(p);
}
void OfflineRecognizer::SetConfig(const OfflineRecognizerConfig &config) const {
auto c = Convert(config);
SherpaOnnxOfflineRecognizerSetConfig(p_, &c);
}
OfflineRecognizer::OfflineRecognizer(const SherpaOnnxOfflineRecognizer *p)
: MoveOnly<OfflineRecognizer, SherpaOnnxOfflineRecognizer>(p) {}
... ...
... ... @@ -223,6 +223,14 @@ struct SHERPA_ONNX_API OfflineWhisperModelConfig {
int32_t tail_paddings = -1;
};
struct SHERPA_ONNX_API OfflineCanaryModelConfig {
std::string encoder;
std::string decoder;
std::string src_lang;
std::string tgt_lang;
bool use_pnc = true;
};
struct SHERPA_ONNX_API OfflineFireRedAsrModelConfig {
std::string encoder;
std::string decoder;
... ... @@ -273,6 +281,7 @@ struct SHERPA_ONNX_API OfflineModelConfig {
OfflineFireRedAsrModelConfig fire_red_asr;
OfflineDolphinModelConfig dolphin;
OfflineZipformerCtcModelConfig zipformer_ctc;
OfflineCanaryModelConfig canary;
};
struct SHERPA_ONNX_API OfflineLMConfig {
... ... @@ -335,6 +344,8 @@ class SHERPA_ONNX_API OfflineRecognizer
OfflineRecognizerResult GetResult(const OfflineStream *s) const;
void SetConfig(const OfflineRecognizerConfig &config) const;
private:
explicit OfflineRecognizer(const SherpaOnnxOfflineRecognizer *p);
};
... ...
... ... @@ -45,7 +45,7 @@ Usage:
./bin/sherpa-onnx \
--debug=1 \
--zipformer2-ctc-model=./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/ctc-epoch-20-avg-1-chunk-16-left-128.int8.onnx \
--zipformer2-ctc-model=./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/ctc-epoch-20-avg-1-chunk-16-left-128.onnx \
--tokens=./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/tokens.txt \
./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/test_wavs/DEV_T0000000000.wav \
./sherpa-onnx-streaming-zipformer-ctc-multi-zh-hans-2023-12-13/test_wavs/DEV_T0000000001.wav \
... ...
... ... @@ -12,7 +12,6 @@ set(exported_functions
SherpaOnnxCreateOnlineRecognizer
SherpaOnnxCreateOnlineStream
SherpaOnnxDecodeOnlineStream
SherpaOnnxDestroyOfflineStreamResultJson
SherpaOnnxDestroyOnlineRecognizer
SherpaOnnxDestroyOnlineRecognizerResult
SherpaOnnxDestroyOnlineStream
... ...
... ... @@ -59,6 +59,10 @@ function freeConfig(config, Module) {
freeConfig(config.senseVoice, Module)
}
if ('canary' in config) {
freeConfig(config.canary, Module)
}
if ('lm' in config) {
freeConfig(config.lm, Module)
}
... ... @@ -246,7 +250,7 @@ function initSherpaOnnxOnlineModelConfig(config, Module) {
Module.setValue(ptr + offset, buffer + tokensLen, 'i8*'); // provider
offset += 4;
Module.setValue(ptr + offset, config.debug || 0, 'i32');
Module.setValue(ptr + offset, config.debug ?? 1, 'i32');
offset += 4;
Module.setValue(
... ... @@ -692,6 +696,51 @@ function initSherpaOnnxOfflineWhisperModelConfig(config, Module) {
}
}
function initSherpaOnnxOfflineCanaryModelConfig(config, Module) {
const encoderLen = Module.lengthBytesUTF8(config.encoder || '') + 1;
const decoderLen = Module.lengthBytesUTF8(config.decoder || '') + 1;
const srcLangLen = Module.lengthBytesUTF8(config.srcLang || '') + 1;
const tgtLangLen = Module.lengthBytesUTF8(config.tgtLang || '') + 1;
const n = encoderLen + decoderLen + srcLangLen + tgtLangLen;
const buffer = Module._malloc(n);
const len = 5 * 4; // 4 pointers + 1 int32
const ptr = Module._malloc(len);
let offset = 0;
Module.stringToUTF8(config.encoder || '', buffer + offset, encoderLen);
offset += encoderLen;
Module.stringToUTF8(config.decoder || '', buffer + offset, decoderLen);
offset += decoderLen;
Module.stringToUTF8(config.srcLang || '', buffer + offset, srcLangLen);
offset += srcLangLen;
Module.stringToUTF8(config.tgtLang || '', buffer + offset, tgtLangLen);
offset += tgtLangLen;
offset = 0;
Module.setValue(ptr, buffer + offset, 'i8*');
offset += encoderLen;
Module.setValue(ptr + 4, buffer + offset, 'i8*');
offset += decoderLen;
Module.setValue(ptr + 8, buffer + offset, 'i8*');
offset += srcLangLen;
Module.setValue(ptr + 12, buffer + offset, 'i8*');
offset += tgtLangLen;
Module.setValue(ptr + 16, config.usePnc ?? 1, 'i32');
return {
buffer: buffer, ptr: ptr, len: len,
}
}
function initSherpaOnnxOfflineMoonshineModelConfig(config, Module) {
const preprocessorLen = Module.lengthBytesUTF8(config.preprocessor || '') + 1;
const encoderLen = Module.lengthBytesUTF8(config.encoder || '') + 1;
... ... @@ -811,7 +860,7 @@ function initSherpaOnnxOfflineSenseVoiceModelConfig(config, Module) {
Module.setValue(ptr + 4, buffer + offset, 'i8*');
offset += languageLen;
Module.setValue(ptr + 8, config.useInverseTextNormalization || 0, 'i32');
Module.setValue(ptr + 8, config.useInverseTextNormalization ?? 0, 'i32');
return {
buffer: buffer, ptr: ptr, len: len,
... ... @@ -907,6 +956,16 @@ function initSherpaOnnxOfflineModelConfig(config, Module) {
};
}
if (!('canary' in config)) {
config.canary = {
encoder: '',
decoder: '',
srcLang: '',
tgtLang: '',
usePnc: 1,
};
}
const transducer =
initSherpaOnnxOfflineTransducerModelConfig(config.transducer, Module);
... ... @@ -936,9 +995,11 @@ function initSherpaOnnxOfflineModelConfig(config, Module) {
const zipformerCtc =
initSherpaOnnxOfflineZipformerCtcModelConfig(config.zipformerCtc, Module);
const canary = initSherpaOnnxOfflineCanaryModelConfig(config.canary, Module);
const len = transducer.len + paraformer.len + nemoCtc.len + whisper.len +
tdnn.len + 8 * 4 + senseVoice.len + moonshine.len + fireRedAsr.len +
dolphin.len + zipformerCtc.len;
dolphin.len + zipformerCtc.len + canary.len;
const ptr = Module._malloc(len);
... ... @@ -1000,7 +1061,7 @@ function initSherpaOnnxOfflineModelConfig(config, Module) {
Module.setValue(ptr + offset, config.numThreads || 1, 'i32');
offset += 4;
Module.setValue(ptr + offset, config.debug || 0, 'i32');
Module.setValue(ptr + offset, config.debug ?? 1, 'i32');
offset += 4;
Module.setValue(ptr + offset, buffer + tokensLen, 'i8*'); // provider
... ... @@ -1043,11 +1104,14 @@ function initSherpaOnnxOfflineModelConfig(config, Module) {
Module._CopyHeap(zipformerCtc.ptr, zipformerCtc.len, ptr + offset);
offset += zipformerCtc.len;
Module._CopyHeap(canary.ptr, canary.len, ptr + offset);
offset += canary.len;
return {
buffer: buffer, ptr: ptr, len: len, transducer: transducer,
paraformer: paraformer, nemoCtc: nemoCtc, whisper: whisper, tdnn: tdnn,
senseVoice: senseVoice, moonshine: moonshine, fireRedAsr: fireRedAsr,
dolphin: dolphin, zipformerCtc: zipformerCtc
dolphin: dolphin, zipformerCtc: zipformerCtc, canary: canary,
}
}
... ... @@ -1189,6 +1253,13 @@ class OfflineRecognizer {
this.Module = Module;
}
setConfig(configObj) {
const config =
initSherpaOnnxOfflineRecognizerConfig(configObj, this.Module);
this.Module._SherpaOnnxOfflineRecognizerSetConfig(this.handle, config.ptr);
freeConfig(config, this.Module);
}
free() {
this.Module._SherpaOnnxDestroyOfflineRecognizer(this.handle);
this.handle = 0
... ...
... ... @@ -41,6 +41,7 @@ set(exported_functions
SherpaOnnxDestroyOfflineStreamResultJson
SherpaOnnxGetOfflineStreamResult
SherpaOnnxGetOfflineStreamResultAsJson
SherpaOnnxOfflineRecognizerSetConfig
# online kws
SherpaOnnxCreateKeywordSpotter
SherpaOnnxCreateKeywordStream
... ...
... ... @@ -21,6 +21,7 @@ static_assert(sizeof(SherpaOnnxOfflineFireRedAsrModelConfig) == 2 * 4, "");
static_assert(sizeof(SherpaOnnxOfflineMoonshineModelConfig) == 4 * 4, "");
static_assert(sizeof(SherpaOnnxOfflineTdnnModelConfig) == 4, "");
static_assert(sizeof(SherpaOnnxOfflineSenseVoiceModelConfig) == 3 * 4, "");
static_assert(sizeof(SherpaOnnxOfflineCanaryModelConfig) == 5 * 4, "");
static_assert(sizeof(SherpaOnnxOfflineLMConfig) == 2 * 4, "");
static_assert(sizeof(SherpaOnnxOfflineModelConfig) ==
... ... @@ -33,7 +34,8 @@ static_assert(sizeof(SherpaOnnxOfflineModelConfig) ==
sizeof(SherpaOnnxOfflineMoonshineModelConfig) +
sizeof(SherpaOnnxOfflineFireRedAsrModelConfig) +
sizeof(SherpaOnnxOfflineDolphinModelConfig) +
sizeof(SherpaOnnxOfflineZipformerCtcModelConfig),
sizeof(SherpaOnnxOfflineZipformerCtcModelConfig) +
sizeof(SherpaOnnxOfflineCanaryModelConfig),
"");
static_assert(sizeof(SherpaOnnxFeatureConfig) == 2 * 4, "");
... ... @@ -80,6 +82,7 @@ void PrintOfflineRecognizerConfig(SherpaOnnxOfflineRecognizerConfig *config) {
auto fire_red_asr = &model_config->fire_red_asr;
auto dolphin = &model_config->dolphin;
auto zipformer_ctc = &model_config->zipformer_ctc;
auto canary = &model_config->canary;
fprintf(stdout, "----------offline transducer model config----------\n");
fprintf(stdout, "encoder: %s\n", transducer->encoder);
... ... @@ -123,6 +126,13 @@ void PrintOfflineRecognizerConfig(SherpaOnnxOfflineRecognizerConfig *config) {
fprintf(stdout, "----------offline zipformer ctc model config----------\n");
fprintf(stdout, "model: %s\n", zipformer_ctc->model);
fprintf(stdout, "----------offline NeMo Canary model config----------\n");
fprintf(stdout, "encoder: %s\n", canary->encoder);
fprintf(stdout, "decoder: %s\n", canary->decoder);
fprintf(stdout, "src_lang: %s\n", canary->src_lang);
fprintf(stdout, "tgt_lang: %s\n", canary->tgt_lang);
fprintf(stdout, "use_pnc: %d\n", canary->use_pnc);
fprintf(stdout, "tokens: %s\n", model_config->tokens);
fprintf(stdout, "num_threads: %d\n", model_config->num_threads);
fprintf(stdout, "provider: %s\n", model_config->provider);
... ...