Toggle navigation
Toggle navigation
此项目
正在载入...
Sign in
xuning
/
sherpaonnx
转到一个项目
Toggle navigation
项目
群组
代码片段
帮助
Toggle navigation pinning
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Network
Create a new issue
Builds
Commits
Authored by
Fangjun Kuang
2024-07-22 14:08:40 +0800
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Committed by
GitHub
2024-07-22 14:08:40 +0800
Commit
dd300b1de51c21ef8cd23026d684cf3e701dce78
dd300b1d
1 parent
ac8223bd
Add Java and Kotlin API for sense voice (#1164)
隐藏空白字符变更
内嵌
并排对比
正在显示
16 个修改的文件
包含
601 行增加
和
2 行删除
.github/workflows/run-java-test.yaml
java-api-examples/NonStreamingDecodeFileSenseVoice.java
java-api-examples/README.md
java-api-examples/VadFromMicWithNonStreamingSenseVoice.java
java-api-examples/VadNonStreamingSenseVoice.java
java-api-examples/run-non-streaming-decode-file-sense-voice.sh
java-api-examples/run-vad-from-mic-non-streaming-sense-voice.sh
java-api-examples/run-vad-non-streaming-sense-voice.sh
kotlin-api-examples/run.sh
kotlin-api-examples/test_offline_asr.kt
scripts/apk/generate-vad-asr-apk-script.py
sherpa-onnx/java-api/Makefile
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineModelConfig.java
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineSenseVoiceModelConfig.java
sherpa-onnx/jni/offline-recognizer.cc
sherpa-onnx/kotlin-api/OfflineRecognizer.kt
.github/workflows/run-java-test.yaml
查看文件 @
dd300b1
...
...
@@ -114,6 +114,16 @@ jobs:
./run-kws-from-file.sh
rm -rf sherpa-onnx-*
-
name
:
Run java test (VAD + Non-streaming SenseVoice)
shell
:
bash
run
:
|
cd ./java-api-examples
./run-vad-non-streaming-sense-voice.sh
rm *.onnx
ls -lh *.wav
rm *.wav
rm -rf sherpa-onnx-*
-
name
:
Run java test (VAD + Non-streaming Paraformer)
shell
:
bash
run
:
|
...
...
@@ -193,6 +203,10 @@ jobs:
shell
:
bash
run
:
|
cd ./java-api-examples
./run-non-streaming-decode-file-sense-voice.sh
rm -rf sherpa-onnx-sense-voice-*
./run-inverse-text-normalization-paraformer.sh
./run-non-streaming-decode-file-paraformer.sh
...
...
java-api-examples/NonStreamingDecodeFileSenseVoice.java
0 → 100644
查看文件 @
dd300b1
// Copyright 2024 Xiaomi Corporation
// This file shows how to use an offline SenseVoice model,
// i.e., non-streaming SenseVoice model,
// to decode files.
import
com.k2fsa.sherpa.onnx.*
;
public
class
NonStreamingDecodeFileSenseVoice
{
public
static
void
main
(
String
[]
args
)
{
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/sense-voice/index.html
// to download model files
String
model
=
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx"
;
String
tokens
=
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt"
;
String
waveFilename
=
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav"
;
WaveReader
reader
=
new
WaveReader
(
waveFilename
);
OfflineSenseVoiceModelConfig
senseVoice
=
OfflineSenseVoiceModelConfig
.
builder
().
setModel
(
model
).
build
();
OfflineModelConfig
modelConfig
=
OfflineModelConfig
.
builder
()
.
setSenseVoice
(
senseVoice
)
.
setTokens
(
tokens
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
build
();
OfflineRecognizerConfig
config
=
OfflineRecognizerConfig
.
builder
()
.
setOfflineModelConfig
(
modelConfig
)
.
setDecodingMethod
(
"greedy_search"
)
.
build
();
OfflineRecognizer
recognizer
=
new
OfflineRecognizer
(
config
);
OfflineStream
stream
=
recognizer
.
createStream
();
stream
.
acceptWaveform
(
reader
.
getSamples
(),
reader
.
getSampleRate
());
recognizer
.
decode
(
stream
);
String
text
=
recognizer
.
getResult
(
stream
).
getText
();
System
.
out
.
printf
(
"filename:%s\nresult:%s\n"
,
waveFilename
,
text
);
stream
.
release
();
recognizer
.
release
();
}
}
...
...
java-api-examples/README.md
查看文件 @
dd300b1
...
...
@@ -18,6 +18,7 @@ This directory contains examples for the JAVA API of sherpa-onnx.
```
bash
./run-non-streaming-decode-file-paraformer.sh
./run-non-streaming-decode-file-sense-voice.sh
./run-non-streaming-decode-file-transducer.sh
./run-non-streaming-decode-file-whisper.sh
./run-non-streaming-decode-file-nemo.sh
...
...
@@ -64,6 +65,12 @@ The punctuation model supports both English and Chinese.
./run-vad-from-mic.sh
```
## VAD with a microphone + Non-streaming SenseVoice for speech recognition
```
bash
./run-vad-from-mic-non-streaming-sense-voice.sh
```
## VAD with a microphone + Non-streaming Paraformer for speech recognition
```
bash
...
...
@@ -82,6 +89,12 @@ The punctuation model supports both English and Chinese.
./run-vad-remove-slience.sh
```
## VAD + Non-streaming SenseVoice for speech recognition
```
bash
./run-vad-non-streaming-sense-voice.sh
```
## VAD + Non-streaming Paraformer for speech recognition
```
bash
...
...
java-api-examples/VadFromMicWithNonStreamingSenseVoice.java
0 → 100644
查看文件 @
dd300b1
// Copyright 2024 Xiaomi Corporation
// This file shows how to use a silero_vad model with a non-streaming
// SenseVoice model for speech recognition.
import
com.k2fsa.sherpa.onnx.*
;
import
javax.sound.sampled.*
;
public
class
VadFromMicWithNonStreamingSenseVoice
{
private
static
final
int
sampleRate
=
16000
;
private
static
final
int
windowSize
=
512
;
public
static
Vad
createVad
()
{
// please download ./silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String
model
=
"./silero_vad.onnx"
;
SileroVadModelConfig
sileroVad
=
SileroVadModelConfig
.
builder
()
.
setModel
(
model
)
.
setThreshold
(
0.5f
)
.
setMinSilenceDuration
(
0.25f
)
.
setMinSpeechDuration
(
0.5f
)
.
setWindowSize
(
windowSize
)
.
build
();
VadModelConfig
config
=
VadModelConfig
.
builder
()
.
setSileroVadModelConfig
(
sileroVad
)
.
setSampleRate
(
sampleRate
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
setProvider
(
"cpu"
)
.
build
();
return
new
Vad
(
config
);
}
public
static
OfflineRecognizer
createOfflineRecognizer
()
{
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/sense-voice/index.html
// to download model files
String
model
=
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx"
;
String
tokens
=
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt"
;
OfflineSenseVoiceModelConfig
senseVoice
=
OfflineSenseVoiceModelConfig
.
builder
().
setModel
(
model
).
build
();
OfflineModelConfig
modelConfig
=
OfflineModelConfig
.
builder
()
.
setSenseVoice
(
senseVoice
)
.
setTokens
(
tokens
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
build
();
OfflineRecognizerConfig
config
=
OfflineRecognizerConfig
.
builder
()
.
setOfflineModelConfig
(
modelConfig
)
.
setDecodingMethod
(
"greedy_search"
)
.
build
();
return
new
OfflineRecognizer
(
config
);
}
public
static
void
main
(
String
[]
args
)
{
Vad
vad
=
createVad
();
OfflineRecognizer
recognizer
=
createOfflineRecognizer
();
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/AudioFormat.html
// Linear PCM, 16000Hz, 16-bit, 1 channel, signed, little endian
AudioFormat
format
=
new
AudioFormat
(
sampleRate
,
16
,
1
,
true
,
false
);
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/DataLine.Info.html#Info-java.lang.Class-javax.sound.sampled.AudioFormat-int-
DataLine
.
Info
info
=
new
DataLine
.
Info
(
TargetDataLine
.
class
,
format
);
TargetDataLine
targetDataLine
;
try
{
targetDataLine
=
(
TargetDataLine
)
AudioSystem
.
getLine
(
info
);
targetDataLine
.
open
(
format
);
targetDataLine
.
start
();
}
catch
(
LineUnavailableException
e
)
{
System
.
out
.
println
(
"Failed to open target data line: "
+
e
.
getMessage
());
vad
.
release
();
recognizer
.
release
();
return
;
}
boolean
printed
=
false
;
byte
[]
buffer
=
new
byte
[
windowSize
*
2
];
float
[]
samples
=
new
float
[
windowSize
];
System
.
out
.
println
(
"Started. Please speak"
);
boolean
running
=
true
;
while
(
targetDataLine
.
isOpen
()
&&
running
)
{
int
n
=
targetDataLine
.
read
(
buffer
,
0
,
buffer
.
length
);
if
(
n
<=
0
)
{
System
.
out
.
printf
(
"Got %d bytes. Expected %d bytes.\n"
,
n
,
buffer
.
length
);
continue
;
}
for
(
int
i
=
0
;
i
!=
windowSize
;
++
i
)
{
short
low
=
buffer
[
2
*
i
];
short
high
=
buffer
[
2
*
i
+
1
];
int
s
=
(
high
<<
8
)
+
low
;
samples
[
i
]
=
(
float
)
s
/
32768
;
}
vad
.
acceptWaveform
(
samples
);
if
(
vad
.
isSpeechDetected
()
&&
!
printed
)
{
System
.
out
.
println
(
"Detected speech"
);
printed
=
true
;
}
if
(!
vad
.
isSpeechDetected
())
{
printed
=
false
;
}
while
(!
vad
.
empty
())
{
SpeechSegment
segment
=
vad
.
front
();
float
startTime
=
segment
.
getStart
()
/
(
float
)
sampleRate
;
float
duration
=
segment
.
getSamples
().
length
/
(
float
)
sampleRate
;
OfflineStream
stream
=
recognizer
.
createStream
();
stream
.
acceptWaveform
(
segment
.
getSamples
(),
sampleRate
);
recognizer
.
decode
(
stream
);
String
text
=
recognizer
.
getResult
(
stream
).
getText
();
stream
.
release
();
if
(!
text
.
isEmpty
())
{
System
.
out
.
printf
(
"%.3f--%.3f: %s\n"
,
startTime
,
startTime
+
duration
,
text
);
}
if
(
text
.
contains
(
"退出程序"
))
{
running
=
false
;
}
vad
.
pop
();
}
}
vad
.
release
();
recognizer
.
release
();
}
}
...
...
java-api-examples/VadNonStreamingSenseVoice.java
0 → 100644
查看文件 @
dd300b1
// Copyright 2024 Xiaomi Corporation
// This file shows how to use a silero_vad model with a non-streaming SenseVoiceModel
// for speech recognition.
import
com.k2fsa.sherpa.onnx.*
;
import
java.util.Arrays
;
public
class
VadNonStreamingSenseVoice
{
public
static
Vad
createVad
()
{
// please download ./silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String
model
=
"./silero_vad.onnx"
;
SileroVadModelConfig
sileroVad
=
SileroVadModelConfig
.
builder
()
.
setModel
(
model
)
.
setThreshold
(
0.5f
)
.
setMinSilenceDuration
(
0.25f
)
.
setMinSpeechDuration
(
0.5f
)
.
setWindowSize
(
512
)
.
build
();
VadModelConfig
config
=
VadModelConfig
.
builder
()
.
setSileroVadModelConfig
(
sileroVad
)
.
setSampleRate
(
16000
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
setProvider
(
"cpu"
)
.
build
();
return
new
Vad
(
config
);
}
public
static
OfflineRecognizer
createOfflineRecognizer
()
{
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/sense-voice/index.html
// to download model files
String
model
=
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx"
;
String
tokens
=
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt"
;
OfflineSenseVoiceModelConfig
senseVoice
=
OfflineSenseVoiceModelConfig
.
builder
().
setModel
(
model
).
build
();
OfflineModelConfig
modelConfig
=
OfflineModelConfig
.
builder
()
.
setSenseVoice
(
senseVoice
)
.
setTokens
(
tokens
)
.
setNumThreads
(
1
)
.
setDebug
(
true
)
.
build
();
OfflineRecognizerConfig
config
=
OfflineRecognizerConfig
.
builder
()
.
setOfflineModelConfig
(
modelConfig
)
.
setDecodingMethod
(
"greedy_search"
)
.
build
();
return
new
OfflineRecognizer
(
config
);
}
public
static
void
main
(
String
[]
args
)
{
Vad
vad
=
createVad
();
OfflineRecognizer
recognizer
=
createOfflineRecognizer
();
// You can download the test file from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String
testWaveFilename
=
"./lei-jun-test.wav"
;
WaveReader
reader
=
new
WaveReader
(
testWaveFilename
);
int
numSamples
=
reader
.
getSamples
().
length
;
int
numIter
=
numSamples
/
512
;
for
(
int
i
=
0
;
i
!=
numIter
;
++
i
)
{
int
start
=
i
*
512
;
int
end
=
start
+
512
;
float
[]
samples
=
Arrays
.
copyOfRange
(
reader
.
getSamples
(),
start
,
end
);
vad
.
acceptWaveform
(
samples
);
if
(
vad
.
isSpeechDetected
())
{
while
(!
vad
.
empty
())
{
SpeechSegment
segment
=
vad
.
front
();
float
startTime
=
segment
.
getStart
()
/
16000.0f
;
float
duration
=
segment
.
getSamples
().
length
/
16000.0f
;
OfflineStream
stream
=
recognizer
.
createStream
();
stream
.
acceptWaveform
(
segment
.
getSamples
(),
16000
);
recognizer
.
decode
(
stream
);
String
text
=
recognizer
.
getResult
(
stream
).
getText
();
stream
.
release
();
if
(!
text
.
isEmpty
())
{
System
.
out
.
printf
(
"%.3f--%.3f: %s\n"
,
startTime
,
startTime
+
duration
,
text
);
}
vad
.
pop
();
}
}
}
vad
.
flush
();
while
(!
vad
.
empty
())
{
SpeechSegment
segment
=
vad
.
front
();
float
startTime
=
segment
.
getStart
()
/
16000.0f
;
float
duration
=
segment
.
getSamples
().
length
/
16000.0f
;
OfflineStream
stream
=
recognizer
.
createStream
();
stream
.
acceptWaveform
(
segment
.
getSamples
(),
16000
);
recognizer
.
decode
(
stream
);
String
text
=
recognizer
.
getResult
(
stream
).
getText
();
stream
.
release
();
if
(!
text
.
isEmpty
())
{
System
.
out
.
printf
(
"%.3f--%.3f: %s\n"
,
startTime
,
startTime
+
duration
,
text
);
}
vad
.
pop
();
}
vad
.
release
();
recognizer
.
release
();
}
}
...
...
java-api-examples/run-non-streaming-decode-file-sense-voice.sh
0 → 100755
查看文件 @
dd300b1
#!/usr/bin/env bash
set
-ex
if
[[
! -f ../build/lib/libsherpa-onnx-jni.dylib
&&
! -f ../build/lib/libsherpa-onnx-jni.so
]]
;
then
mkdir -p ../build
pushd
../build
cmake
\
-DSHERPA_ONNX_ENABLE_PYTHON
=
OFF
\
-DSHERPA_ONNX_ENABLE_TESTS
=
OFF
\
-DSHERPA_ONNX_ENABLE_CHECK
=
OFF
\
-DBUILD_SHARED_LIBS
=
ON
\
-DSHERPA_ONNX_ENABLE_PORTAUDIO
=
OFF
\
-DSHERPA_ONNX_ENABLE_JNI
=
ON
\
..
make -j4
ls -lh lib
popd
fi
if
[
! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar
]
;
then
pushd
../sherpa-onnx/java-api
make
popd
fi
if
[
! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
java
\
-Djava.library.path
=
$PWD
/../build/lib
\
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar
\
NonStreamingDecodeFileSenseVoice.java
...
...
java-api-examples/run-vad-from-mic-non-streaming-sense-voice.sh
0 → 100755
查看文件 @
dd300b1
#!/usr/bin/env bash
set
-ex
if
[[
! -f ../build/lib/libsherpa-onnx-jni.dylib
&&
! -f ../build/lib/libsherpa-onnx-jni.so
]]
;
then
mkdir -p ../build
pushd
../build
cmake
\
-DSHERPA_ONNX_ENABLE_PYTHON
=
OFF
\
-DSHERPA_ONNX_ENABLE_TESTS
=
OFF
\
-DSHERPA_ONNX_ENABLE_CHECK
=
OFF
\
-DBUILD_SHARED_LIBS
=
ON
\
-DSHERPA_ONNX_ENABLE_PORTAUDIO
=
OFF
\
-DSHERPA_ONNX_ENABLE_JNI
=
ON
\
..
make -j4
ls -lh lib
popd
fi
if
[
! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar
]
;
then
pushd
../sherpa-onnx/java-api
make
popd
fi
if
[
! -f ./silero_vad.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
fi
if
[
! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
java
\
-Djava.library.path
=
$PWD
/../build/lib
\
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar
\
./VadFromMicWithNonStreamingSenseVoice.java
...
...
java-api-examples/run-vad-non-streaming-sense-voice.sh
0 → 100755
查看文件 @
dd300b1
#!/usr/bin/env bash
set
-ex
if
[[
! -f ../build/lib/libsherpa-onnx-jni.dylib
&&
! -f ../build/lib/libsherpa-onnx-jni.so
]]
;
then
mkdir -p ../build
pushd
../build
cmake
\
-DSHERPA_ONNX_ENABLE_PYTHON
=
OFF
\
-DSHERPA_ONNX_ENABLE_TESTS
=
OFF
\
-DSHERPA_ONNX_ENABLE_CHECK
=
OFF
\
-DBUILD_SHARED_LIBS
=
ON
\
-DSHERPA_ONNX_ENABLE_PORTAUDIO
=
OFF
\
-DSHERPA_ONNX_ENABLE_JNI
=
ON
\
..
make -j4
ls -lh lib
popd
fi
if
[
! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar
]
;
then
pushd
../sherpa-onnx/java-api
make
popd
fi
if
[
! -f ./silero_vad.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
fi
if
[
! -f ./lei-jun-test.wav
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/lei-jun-test.wav
fi
if
[
! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
java
\
-Djava.library.path
=
$PWD
/../build/lib
\
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar
\
./VadNonStreamingSenseVoice.java
...
...
kotlin-api-examples/run.sh
查看文件 @
dd300b1
...
...
@@ -167,6 +167,12 @@ function testSpokenLanguageIdentification() {
}
function
testOfflineAsr
()
{
if
[
! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
if
[
! -f ./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx
]
;
then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.en.tar.bz2
...
...
kotlin-api-examples/test_offline_asr.kt
查看文件 @
dd300b1
package com.k2fsa.sherpa.onnx
fun main() {
val types = arrayOf(0, 2, 5, 6)
val types = arrayOf(0, 2, 5, 6
, 15
)
for (type in types) {
test(type)
}
...
...
@@ -15,6 +15,7 @@ fun test(type: Int) {
2 -> "./sherpa-onnx-whisper-tiny.en/test_wavs/0.wav"
5 -> "./sherpa-onnx-zipformer-multi-zh-hans-2023-9-2/test_wavs/1.wav"
6 -> "./sherpa-onnx-nemo-ctc-en-citrinet-512/test_wavs/8k.wav"
15 -> "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav"
else -> null
}
...
...
scripts/apk/generate-vad-asr-apk-script.py
查看文件 @
dd300b1
...
...
@@ -90,6 +90,23 @@ def get_models():
"""
,
),
Model
(
model_name
=
"sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17"
,
idx
=
15
,
lang
=
"zh_en_ko_ja_yue"
,
short_name
=
"sense_voice"
,
cmd
=
"""
pushd $model_name
rm -rfv test_wavs
rm -fv model.onnx
rm -fv *.py
ls -lh
popd
"""
,
),
Model
(
model_name
=
"sherpa-onnx-paraformer-zh-small-2024-03-09"
,
idx
=
14
,
lang
=
"zh"
,
...
...
sherpa-onnx/java-api/Makefile
查看文件 @
dd300b1
...
...
@@ -27,6 +27,7 @@ java_files += OfflineTransducerModelConfig.java
java_files
+=
OfflineParaformerModelConfig.java
java_files
+=
OfflineWhisperModelConfig.java
java_files
+=
OfflineNemoEncDecCtcModelConfig.java
java_files
+=
OfflineSenseVoiceModelConfig.java
java_files
+=
OfflineModelConfig.java
java_files
+=
OfflineRecognizerConfig.java
java_files
+=
OfflineRecognizerResult.java
...
...
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineModelConfig.java
查看文件 @
dd300b1
...
...
@@ -7,6 +7,7 @@ public class OfflineModelConfig {
private
final
OfflineParaformerModelConfig
paraformer
;
private
final
OfflineWhisperModelConfig
whisper
;
private
final
OfflineNemoEncDecCtcModelConfig
nemo
;
private
final
OfflineSenseVoiceModelConfig
senseVoice
;
private
final
String
teleSpeech
;
private
final
String
tokens
;
private
final
int
numThreads
;
...
...
@@ -22,6 +23,7 @@ public class OfflineModelConfig {
this
.
paraformer
=
builder
.
paraformer
;
this
.
whisper
=
builder
.
whisper
;
this
.
nemo
=
builder
.
nemo
;
this
.
senseVoice
=
builder
.
senseVoice
;
this
.
teleSpeech
=
builder
.
teleSpeech
;
this
.
tokens
=
builder
.
tokens
;
this
.
numThreads
=
builder
.
numThreads
;
...
...
@@ -48,6 +50,10 @@ public class OfflineModelConfig {
return
whisper
;
}
public
OfflineSenseVoiceModelConfig
getSenseVoice
()
{
return
senseVoice
;
}
public
String
getTokens
()
{
return
tokens
;
}
...
...
@@ -85,6 +91,7 @@ public class OfflineModelConfig {
private
OfflineTransducerModelConfig
transducer
=
OfflineTransducerModelConfig
.
builder
().
build
();
private
OfflineWhisperModelConfig
whisper
=
OfflineWhisperModelConfig
.
builder
().
build
();
private
OfflineNemoEncDecCtcModelConfig
nemo
=
OfflineNemoEncDecCtcModelConfig
.
builder
().
build
();
private
OfflineSenseVoiceModelConfig
senseVoice
=
OfflineSenseVoiceModelConfig
.
builder
().
build
();
private
String
teleSpeech
=
""
;
private
String
tokens
=
""
;
private
int
numThreads
=
1
;
...
...
@@ -113,7 +120,6 @@ public class OfflineModelConfig {
return
this
;
}
public
Builder
setTeleSpeech
(
String
teleSpeech
)
{
this
.
teleSpeech
=
teleSpeech
;
return
this
;
...
...
@@ -124,6 +130,11 @@ public class OfflineModelConfig {
return
this
;
}
public
Builder
setSenseVoice
(
OfflineSenseVoiceModelConfig
senseVoice
)
{
this
.
senseVoice
=
senseVoice
;
return
this
;
}
public
Builder
setTokens
(
String
tokens
)
{
this
.
tokens
=
tokens
;
return
this
;
...
...
sherpa-onnx/java-api/src/com/k2fsa/sherpa/onnx/OfflineSenseVoiceModelConfig.java
0 → 100644
查看文件 @
dd300b1
// Copyright 2024 Xiaomi Corporation
package
com
.
k2fsa
.
sherpa
.
onnx
;
public
class
OfflineSenseVoiceModelConfig
{
private
final
String
model
;
private
final
String
language
;
private
final
boolean
useInverseTextNormalization
;
private
OfflineSenseVoiceModelConfig
(
Builder
builder
)
{
this
.
model
=
builder
.
model
;
this
.
language
=
builder
.
language
;
this
.
useInverseTextNormalization
=
builder
.
useInverseTextNormalization
;
}
public
static
Builder
builder
()
{
return
new
Builder
();
}
public
String
getModel
()
{
return
model
;
}
public
String
getLanguage
()
{
return
language
;
}
public
boolean
getUseInverseTextNormalization
()
{
return
useInverseTextNormalization
;
}
public
static
class
Builder
{
private
String
model
=
""
;
private
String
language
=
""
;
private
boolean
useInverseTextNormalization
=
true
;
public
OfflineSenseVoiceModelConfig
build
()
{
return
new
OfflineSenseVoiceModelConfig
(
this
);
}
public
Builder
setModel
(
String
model
)
{
this
.
model
=
model
;
return
this
;
}
public
Builder
setLanguage
(
String
language
)
{
this
.
language
=
language
;
return
this
;
}
public
Builder
setInverseTextNormalization
(
boolean
useInverseTextNormalization
)
{
this
.
useInverseTextNormalization
=
useInverseTextNormalization
;
return
this
;
}
}
}
...
...
sherpa-onnx/jni/offline-recognizer.cc
查看文件 @
dd300b1
...
...
@@ -171,6 +171,31 @@ static OfflineRecognizerConfig GetOfflineConfig(JNIEnv *env, jobject config) {
ans
.
model_config
.
whisper
.
tail_paddings
=
env
->
GetIntField
(
whisper_config
,
fid
);
// sense voice
fid
=
env
->
GetFieldID
(
model_config_cls
,
"senseVoice"
,
"Lcom/k2fsa/sherpa/onnx/OfflineSenseVoiceModelConfig;"
);
jobject
sense_voice_config
=
env
->
GetObjectField
(
model_config
,
fid
);
jclass
sense_voice_config_cls
=
env
->
GetObjectClass
(
sense_voice_config
);
fid
=
env
->
GetFieldID
(
sense_voice_config_cls
,
"model"
,
"Ljava/lang/String;"
);
s
=
(
jstring
)
env
->
GetObjectField
(
sense_voice_config
,
fid
);
p
=
env
->
GetStringUTFChars
(
s
,
nullptr
);
ans
.
model_config
.
sense_voice
.
model
=
p
;
env
->
ReleaseStringUTFChars
(
s
,
p
);
fid
=
env
->
GetFieldID
(
sense_voice_config_cls
,
"language"
,
"Ljava/lang/String;"
);
s
=
(
jstring
)
env
->
GetObjectField
(
sense_voice_config
,
fid
);
p
=
env
->
GetStringUTFChars
(
s
,
nullptr
);
ans
.
model_config
.
sense_voice
.
language
=
p
;
env
->
ReleaseStringUTFChars
(
s
,
p
);
fid
=
env
->
GetFieldID
(
sense_voice_config_cls
,
"useInverseTextNormalization"
,
"Z"
);
ans
.
model_config
.
sense_voice
.
use_itn
=
env
->
GetBooleanField
(
sense_voice_config
,
fid
);
// nemo
fid
=
env
->
GetFieldID
(
model_config_cls
,
"nemo"
,
"Lcom/k2fsa/sherpa/onnx/OfflineNemoEncDecCtcModelConfig;"
);
...
...
sherpa-onnx/kotlin-api/OfflineRecognizer.kt
查看文件 @
dd300b1
...
...
@@ -30,11 +30,18 @@ data class OfflineWhisperModelConfig(
var tailPaddings: Int = 1000, // Padding added at the end of the samples
)
data class OfflineSenseVoiceModelConfig(
var model: String = "",
var language: String = "",
var useInverseTextNormalization: Boolean = true,
)
data class OfflineModelConfig(
var transducer: OfflineTransducerModelConfig = OfflineTransducerModelConfig(),
var paraformer: OfflineParaformerModelConfig = OfflineParaformerModelConfig(),
var whisper: OfflineWhisperModelConfig = OfflineWhisperModelConfig(),
var nemo: OfflineNemoEncDecCtcModelConfig = OfflineNemoEncDecCtcModelConfig(),
var senseVoice: OfflineSenseVoiceModelConfig = OfflineSenseVoiceModelConfig(),
var teleSpeech: String = "",
var numThreads: Int = 1,
var debug: Boolean = false,
...
...
@@ -321,6 +328,16 @@ fun getOfflineModelConfig(type: Int): OfflineModelConfig? {
modelType = "paraformer",
)
}
15 -> {
val modelDir = "sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17"
return OfflineModelConfig(
senseVoice = OfflineSenseVoiceModelConfig(
model = "$modelDir/model.int8.onnx",
),
tokens = "$modelDir/tokens.txt",
)
}
}
return null
}
...
...
请
注册
或
登录
后发表评论