Fangjun Kuang
Committed by GitHub

Add Java and Kotlin API for sense voice (#1164)

... ... @@ -114,6 +114,16 @@ jobs:
./run-kws-from-file.sh
rm -rf sherpa-onnx-*
- name: Run java test (VAD + Non-streaming SenseVoice)
shell: bash
run: |
cd ./java-api-examples
./run-vad-non-streaming-sense-voice.sh
rm *.onnx
ls -lh *.wav
rm *.wav
rm -rf sherpa-onnx-*
- name: Run java test (VAD + Non-streaming Paraformer)
shell: bash
run: |
... ... @@ -193,6 +203,10 @@ jobs:
shell: bash
run: |
cd ./java-api-examples
./run-non-streaming-decode-file-sense-voice.sh
rm -rf sherpa-onnx-sense-voice-*
./run-inverse-text-normalization-paraformer.sh
./run-non-streaming-decode-file-paraformer.sh
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use an offline SenseVoice model,
// i.e., non-streaming SenseVoice model,
// to decode files.
import com.k2fsa.sherpa.onnx.*;
public class NonStreamingDecodeFileSenseVoice {
public static void main(String[] args) {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/sense-voice/index.html
// to download model files
String model = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx";
String tokens = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt";
String waveFilename = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav";
WaveReader reader = new WaveReader(waveFilename);
OfflineSenseVoiceModelConfig senseVoice =
OfflineSenseVoiceModelConfig.builder().setModel(model).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setSenseVoice(senseVoice)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
OfflineRecognizer recognizer = new OfflineRecognizer(config);
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(reader.getSamples(), reader.getSampleRate());
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
System.out.printf("filename:%s\nresult:%s\n", waveFilename, text);
stream.release();
recognizer.release();
}
}
... ...
... ... @@ -18,6 +18,7 @@ This directory contains examples for the JAVA API of sherpa-onnx.
```bash
./run-non-streaming-decode-file-paraformer.sh
./run-non-streaming-decode-file-sense-voice.sh
./run-non-streaming-decode-file-transducer.sh
./run-non-streaming-decode-file-whisper.sh
./run-non-streaming-decode-file-nemo.sh
... ... @@ -64,6 +65,12 @@ The punctuation model supports both English and Chinese.
./run-vad-from-mic.sh
```
## VAD with a microphone + Non-streaming SenseVoice for speech recognition
```bash
./run-vad-from-mic-non-streaming-sense-voice.sh
```
## VAD with a microphone + Non-streaming Paraformer for speech recognition
```bash
... ... @@ -82,6 +89,12 @@ The punctuation model supports both English and Chinese.
./run-vad-remove-slience.sh
```
## VAD + Non-streaming SenseVoice for speech recognition
```bash
./run-vad-non-streaming-sense-voice.sh
```
## VAD + Non-streaming Paraformer for speech recognition
```bash
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use a silero_vad model with a non-streaming
// SenseVoice model for speech recognition.
import com.k2fsa.sherpa.onnx.*;
import javax.sound.sampled.*;
public class VadFromMicWithNonStreamingSenseVoice {
private static final int sampleRate = 16000;
private static final int windowSize = 512;
public static Vad createVad() {
// please download ./silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String model = "./silero_vad.onnx";
SileroVadModelConfig sileroVad =
SileroVadModelConfig.builder()
.setModel(model)
.setThreshold(0.5f)
.setMinSilenceDuration(0.25f)
.setMinSpeechDuration(0.5f)
.setWindowSize(windowSize)
.build();
VadModelConfig config =
VadModelConfig.builder()
.setSileroVadModelConfig(sileroVad)
.setSampleRate(sampleRate)
.setNumThreads(1)
.setDebug(true)
.setProvider("cpu")
.build();
return new Vad(config);
}
public static OfflineRecognizer createOfflineRecognizer() {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/sense-voice/index.html
// to download model files
String model = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx";
String tokens = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt";
OfflineSenseVoiceModelConfig senseVoice =
OfflineSenseVoiceModelConfig.builder().setModel(model).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setSenseVoice(senseVoice)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
return new OfflineRecognizer(config);
}
public static void main(String[] args) {
Vad vad = createVad();
OfflineRecognizer recognizer = createOfflineRecognizer();
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/AudioFormat.html
// Linear PCM, 16000Hz, 16-bit, 1 channel, signed, little endian
AudioFormat format = new AudioFormat(sampleRate, 16, 1, true, false);
// https://docs.oracle.com/javase/8/docs/api/javax/sound/sampled/DataLine.Info.html#Info-java.lang.Class-javax.sound.sampled.AudioFormat-int-
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
TargetDataLine targetDataLine;
try {
targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
targetDataLine.open(format);
targetDataLine.start();
} catch (LineUnavailableException e) {
System.out.println("Failed to open target data line: " + e.getMessage());
vad.release();
recognizer.release();
return;
}
boolean printed = false;
byte[] buffer = new byte[windowSize * 2];
float[] samples = new float[windowSize];
System.out.println("Started. Please speak");
boolean running = true;
while (targetDataLine.isOpen() && running) {
int n = targetDataLine.read(buffer, 0, buffer.length);
if (n <= 0) {
System.out.printf("Got %d bytes. Expected %d bytes.\n", n, buffer.length);
continue;
}
for (int i = 0; i != windowSize; ++i) {
short low = buffer[2 * i];
short high = buffer[2 * i + 1];
int s = (high << 8) + low;
samples[i] = (float) s / 32768;
}
vad.acceptWaveform(samples);
if (vad.isSpeechDetected() && !printed) {
System.out.println("Detected speech");
printed = true;
}
if (!vad.isSpeechDetected()) {
printed = false;
}
while (!vad.empty()) {
SpeechSegment segment = vad.front();
float startTime = segment.getStart() / (float) sampleRate;
float duration = segment.getSamples().length / (float) sampleRate;
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(segment.getSamples(), sampleRate);
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
stream.release();
if (!text.isEmpty()) {
System.out.printf("%.3f--%.3f: %s\n", startTime, startTime + duration, text);
}
if (text.contains("退出程序")) {
running = false;
}
vad.pop();
}
}
vad.release();
recognizer.release();
}
}
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use a silero_vad model with a non-streaming SenseVoiceModel
// for speech recognition.
import com.k2fsa.sherpa.onnx.*;
import java.util.Arrays;
public class VadNonStreamingSenseVoice {
public static Vad createVad() {
// please download ./silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String model = "./silero_vad.onnx";
SileroVadModelConfig sileroVad =
SileroVadModelConfig.builder()
.setModel(model)
.setThreshold(0.5f)
.setMinSilenceDuration(0.25f)
.setMinSpeechDuration(0.5f)
.setWindowSize(512)
.build();
VadModelConfig config =
VadModelConfig.builder()
.setSileroVadModelConfig(sileroVad)
.setSampleRate(16000)
.setNumThreads(1)
.setDebug(true)
.setProvider("cpu")
.build();
return new Vad(config);
}
public static OfflineRecognizer createOfflineRecognizer() {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/sense-voice/index.html
// to download model files
String model = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx";
String tokens = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt";
OfflineSenseVoiceModelConfig senseVoice =
OfflineSenseVoiceModelConfig.builder().setModel(model).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setSenseVoice(senseVoice)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
return new OfflineRecognizer(config);
}
public static void main(String[] args) {
Vad vad = createVad();
OfflineRecognizer recognizer = createOfflineRecognizer();
// You can download the test file from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
String testWaveFilename = "./lei-jun-test.wav";
WaveReader reader = new WaveReader(testWaveFilename);
int numSamples = reader.getSamples().length;
int numIter = numSamples / 512;
for (int i = 0; i != numIter; ++i) {
int start = i * 512;
int end = start + 512;
float[] samples = Arrays.copyOfRange(reader.getSamples(), start, end);
vad.acceptWaveform(samples);
if (vad.isSpeechDetected()) {
while (!vad.empty()) {
SpeechSegment segment = vad.front();
float startTime = segment.getStart() / 16000.0f;
float duration = segment.getSamples().length / 16000.0f;
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(segment.getSamples(), 16000);
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
stream.release();
if (!text.isEmpty()) {
System.out.printf("%.3f--%.3f: %s\n", startTime, startTime + duration, text);
}
vad.pop();
}
}
}
vad.flush();
while (!vad.empty()) {
SpeechSegment segment = vad.front();
float startTime = segment.getStart() / 16000.0f;
float duration = segment.getSamples().length / 16000.0f;
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(segment.getSamples(), 16000);
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
stream.release();
if (!text.isEmpty()) {
System.out.printf("%.3f--%.3f: %s\n", startTime, startTime + duration, text);
}
vad.pop();
}
vad.release();
recognizer.release();
}
}
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [ ! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
NonStreamingDecodeFileSenseVoice.java
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [ ! -f ./silero_vad.onnx ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
fi
if [ ! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
./VadFromMicWithNonStreamingSenseVoice.java
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [ ! -f ./silero_vad.onnx ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
fi
if [ ! -f ./lei-jun-test.wav ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/lei-jun-test.wav
fi
if [ ! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
./VadNonStreamingSenseVoice.java
... ...
... ... @@ -167,6 +167,12 @@ function testSpokenLanguageIdentification() {
}
function testOfflineAsr() {
if [ ! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
if [ ! -f ./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.en.tar.bz2
... ...
package com.k2fsa.sherpa.onnx
fun main() {
val types = arrayOf(0, 2, 5, 6)
val types = arrayOf(0, 2, 5, 6, 15)
for (type in types) {
test(type)
}
... ... @@ -15,6 +15,7 @@ fun test(type: Int) {
2 -> "./sherpa-onnx-whisper-tiny.en/test_wavs/0.wav"
5 -> "./sherpa-onnx-zipformer-multi-zh-hans-2023-9-2/test_wavs/1.wav"
6 -> "./sherpa-onnx-nemo-ctc-en-citrinet-512/test_wavs/8k.wav"
15 -> "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav"
else -> null
}
... ...
... ... @@ -90,6 +90,23 @@ def get_models():
""",
),
Model(
model_name="sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17",
idx=15,
lang="zh_en_ko_ja_yue",
short_name="sense_voice",
cmd="""
pushd $model_name
rm -rfv test_wavs
rm -fv model.onnx
rm -fv *.py
ls -lh
popd
""",
),
Model(
model_name="sherpa-onnx-paraformer-zh-small-2024-03-09",
idx=14,
lang="zh",
... ...
... ... @@ -27,6 +27,7 @@ java_files += OfflineTransducerModelConfig.java
java_files += OfflineParaformerModelConfig.java
java_files += OfflineWhisperModelConfig.java
java_files += OfflineNemoEncDecCtcModelConfig.java
java_files += OfflineSenseVoiceModelConfig.java
java_files += OfflineModelConfig.java
java_files += OfflineRecognizerConfig.java
java_files += OfflineRecognizerResult.java
... ...
... ... @@ -7,6 +7,7 @@ public class OfflineModelConfig {
private final OfflineParaformerModelConfig paraformer;
private final OfflineWhisperModelConfig whisper;
private final OfflineNemoEncDecCtcModelConfig nemo;
private final OfflineSenseVoiceModelConfig senseVoice;
private final String teleSpeech;
private final String tokens;
private final int numThreads;
... ... @@ -22,6 +23,7 @@ public class OfflineModelConfig {
this.paraformer = builder.paraformer;
this.whisper = builder.whisper;
this.nemo = builder.nemo;
this.senseVoice = builder.senseVoice;
this.teleSpeech = builder.teleSpeech;
this.tokens = builder.tokens;
this.numThreads = builder.numThreads;
... ... @@ -48,6 +50,10 @@ public class OfflineModelConfig {
return whisper;
}
public OfflineSenseVoiceModelConfig getSenseVoice() {
return senseVoice;
}
public String getTokens() {
return tokens;
}
... ... @@ -85,6 +91,7 @@ public class OfflineModelConfig {
private OfflineTransducerModelConfig transducer = OfflineTransducerModelConfig.builder().build();
private OfflineWhisperModelConfig whisper = OfflineWhisperModelConfig.builder().build();
private OfflineNemoEncDecCtcModelConfig nemo = OfflineNemoEncDecCtcModelConfig.builder().build();
private OfflineSenseVoiceModelConfig senseVoice = OfflineSenseVoiceModelConfig.builder().build();
private String teleSpeech = "";
private String tokens = "";
private int numThreads = 1;
... ... @@ -113,7 +120,6 @@ public class OfflineModelConfig {
return this;
}
public Builder setTeleSpeech(String teleSpeech) {
this.teleSpeech = teleSpeech;
return this;
... ... @@ -124,6 +130,11 @@ public class OfflineModelConfig {
return this;
}
public Builder setSenseVoice(OfflineSenseVoiceModelConfig senseVoice) {
this.senseVoice = senseVoice;
return this;
}
public Builder setTokens(String tokens) {
this.tokens = tokens;
return this;
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineSenseVoiceModelConfig {
private final String model;
private final String language;
private final boolean useInverseTextNormalization;
private OfflineSenseVoiceModelConfig(Builder builder) {
this.model = builder.model;
this.language = builder.language;
this.useInverseTextNormalization = builder.useInverseTextNormalization;
}
public static Builder builder() {
return new Builder();
}
public String getModel() {
return model;
}
public String getLanguage() {
return language;
}
public boolean getUseInverseTextNormalization() {
return useInverseTextNormalization;
}
public static class Builder {
private String model = "";
private String language = "";
private boolean useInverseTextNormalization = true;
public OfflineSenseVoiceModelConfig build() {
return new OfflineSenseVoiceModelConfig(this);
}
public Builder setModel(String model) {
this.model = model;
return this;
}
public Builder setLanguage(String language) {
this.language = language;
return this;
}
public Builder setInverseTextNormalization(boolean useInverseTextNormalization) {
this.useInverseTextNormalization = useInverseTextNormalization;
return this;
}
}
}
... ...
... ... @@ -171,6 +171,31 @@ static OfflineRecognizerConfig GetOfflineConfig(JNIEnv *env, jobject config) {
ans.model_config.whisper.tail_paddings =
env->GetIntField(whisper_config, fid);
// sense voice
fid = env->GetFieldID(model_config_cls, "senseVoice",
"Lcom/k2fsa/sherpa/onnx/OfflineSenseVoiceModelConfig;");
jobject sense_voice_config = env->GetObjectField(model_config, fid);
jclass sense_voice_config_cls = env->GetObjectClass(sense_voice_config);
fid = env->GetFieldID(sense_voice_config_cls, "model", "Ljava/lang/String;");
s = (jstring)env->GetObjectField(sense_voice_config, fid);
p = env->GetStringUTFChars(s, nullptr);
ans.model_config.sense_voice.model = p;
env->ReleaseStringUTFChars(s, p);
fid =
env->GetFieldID(sense_voice_config_cls, "language", "Ljava/lang/String;");
s = (jstring)env->GetObjectField(sense_voice_config, fid);
p = env->GetStringUTFChars(s, nullptr);
ans.model_config.sense_voice.language = p;
env->ReleaseStringUTFChars(s, p);
fid = env->GetFieldID(sense_voice_config_cls, "useInverseTextNormalization",
"Z");
ans.model_config.sense_voice.use_itn =
env->GetBooleanField(sense_voice_config, fid);
// nemo
fid = env->GetFieldID(
model_config_cls, "nemo",
"Lcom/k2fsa/sherpa/onnx/OfflineNemoEncDecCtcModelConfig;");
... ...
... ... @@ -30,11 +30,18 @@ data class OfflineWhisperModelConfig(
var tailPaddings: Int = 1000, // Padding added at the end of the samples
)
data class OfflineSenseVoiceModelConfig(
var model: String = "",
var language: String = "",
var useInverseTextNormalization: Boolean = true,
)
data class OfflineModelConfig(
var transducer: OfflineTransducerModelConfig = OfflineTransducerModelConfig(),
var paraformer: OfflineParaformerModelConfig = OfflineParaformerModelConfig(),
var whisper: OfflineWhisperModelConfig = OfflineWhisperModelConfig(),
var nemo: OfflineNemoEncDecCtcModelConfig = OfflineNemoEncDecCtcModelConfig(),
var senseVoice: OfflineSenseVoiceModelConfig = OfflineSenseVoiceModelConfig(),
var teleSpeech: String = "",
var numThreads: Int = 1,
var debug: Boolean = false,
... ... @@ -321,6 +328,16 @@ fun getOfflineModelConfig(type: Int): OfflineModelConfig? {
modelType = "paraformer",
)
}
15 -> {
val modelDir = "sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17"
return OfflineModelConfig(
senseVoice = OfflineSenseVoiceModelConfig(
model = "$modelDir/model.int8.onnx",
),
tokens = "$modelDir/tokens.txt",
)
}
}
return null
}
... ...