Committed by
GitHub
export parakeet-tdt-0.6b-v2 to sherpa-onnx (#2180)
正在显示
4 个修改的文件
包含
570 行增加
和
0 行删除
| 1 | +name: export-nemo-parakeet-tdt-0.6b-v2 | ||
| 2 | + | ||
| 3 | +on: | ||
| 4 | + push: | ||
| 5 | + branches: | ||
| 6 | + - export-nemo-parakeet-tdt-0.6b-v2 | ||
| 7 | + workflow_dispatch: | ||
| 8 | + | ||
| 9 | +concurrency: | ||
| 10 | + group: export-nemo-parakeet-tdt-0.6b-v2-${{ github.ref }} | ||
| 11 | + cancel-in-progress: true | ||
| 12 | + | ||
| 13 | +jobs: | ||
| 14 | + export-nemo-parakeet-tdt-0_6b-v2: | ||
| 15 | + if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj' | ||
| 16 | + name: parakeet tdt 0.6b v2 | ||
| 17 | + runs-on: ${{ matrix.os }} | ||
| 18 | + strategy: | ||
| 19 | + fail-fast: false | ||
| 20 | + matrix: | ||
| 21 | + os: [macos-latest] | ||
| 22 | + python-version: ["3.10"] | ||
| 23 | + | ||
| 24 | + steps: | ||
| 25 | + - uses: actions/checkout@v4 | ||
| 26 | + | ||
| 27 | + - name: Setup Python ${{ matrix.python-version }} | ||
| 28 | + uses: actions/setup-python@v5 | ||
| 29 | + with: | ||
| 30 | + python-version: ${{ matrix.python-version }} | ||
| 31 | + | ||
| 32 | + - name: Run | ||
| 33 | + shell: bash | ||
| 34 | + run: | | ||
| 35 | + cd scripts/nemo/parakeet-tdt-0.6b-v2 | ||
| 36 | + ./run.sh | ||
| 37 | + | ||
| 38 | + ls -lh *.onnx | ||
| 39 | + mv -v *.onnx ../../.. | ||
| 40 | + mv -v tokens.txt ../../.. | ||
| 41 | + mv 2086-149220-0033.wav ../../../0.wav | ||
| 42 | + | ||
| 43 | + - name: Collect files (fp32) | ||
| 44 | + shell: bash | ||
| 45 | + run: | | ||
| 46 | + d=sherpa-onnx-nemo-parakeet-tdt-0.6b-v2 | ||
| 47 | + mkdir -p $d | ||
| 48 | + cp encoder.int8.onnx $d | ||
| 49 | + cp decoder.onnx $d | ||
| 50 | + cp joiner.onnx $d | ||
| 51 | + cp tokens.txt $d | ||
| 52 | + | ||
| 53 | + mkdir $d/test_wavs | ||
| 54 | + cp 0.wav $d/test_wavs | ||
| 55 | + | ||
| 56 | + tar cjfv $d.tar.bz2 $d | ||
| 57 | + | ||
| 58 | + - name: Collect files (int8) | ||
| 59 | + shell: bash | ||
| 60 | + run: | | ||
| 61 | + d=sherpa-onnx-nemo-parakeet-tdt-0.6b-v2-int8 | ||
| 62 | + mkdir -p $d | ||
| 63 | + cp encoder.int8.onnx $d | ||
| 64 | + cp decoder.int8.onnx $d | ||
| 65 | + cp joiner.int8.onnx $d | ||
| 66 | + cp tokens.txt $d | ||
| 67 | + | ||
| 68 | + mkdir $d/test_wavs | ||
| 69 | + cp 0.wav $d/test_wavs | ||
| 70 | + | ||
| 71 | + tar cjfv $d.tar.bz2 $d | ||
| 72 | + | ||
| 73 | + - name: Collect files (fp16) | ||
| 74 | + shell: bash | ||
| 75 | + run: | | ||
| 76 | + d=sherpa-onnx-nemo-parakeet-tdt-0.6b-v2-fp16 | ||
| 77 | + mkdir -p $d | ||
| 78 | + cp encoder.fp16.onnx $d | ||
| 79 | + cp decoder.fp16.onnx $d | ||
| 80 | + cp joiner.fp16.onnx $d | ||
| 81 | + cp tokens.txt $d | ||
| 82 | + | ||
| 83 | + mkdir $d/test_wavs | ||
| 84 | + cp 0.wav $d/test_wavs | ||
| 85 | + | ||
| 86 | + tar cjfv $d.tar.bz2 $d | ||
| 87 | + | ||
| 88 | + - name: Publish to huggingface | ||
| 89 | + env: | ||
| 90 | + HF_TOKEN: ${{ secrets.HF_TOKEN }} | ||
| 91 | + uses: nick-fields/retry@v3 | ||
| 92 | + with: | ||
| 93 | + max_attempts: 20 | ||
| 94 | + timeout_seconds: 200 | ||
| 95 | + shell: bash | ||
| 96 | + command: | | ||
| 97 | + git config --global user.email "csukuangfj@gmail.com" | ||
| 98 | + git config --global user.name "Fangjun Kuang" | ||
| 99 | + | ||
| 100 | + models=( | ||
| 101 | + sherpa-onnx-nemo-parakeet-tdt-0.6b-v2 | ||
| 102 | + sherpa-onnx-nemo-parakeet-tdt-0.6b-v2-int8 | ||
| 103 | + sherpa-onnx-nemo-parakeet-tdt-0.6b-v2-fp16 | ||
| 104 | + ) | ||
| 105 | + | ||
| 106 | + for m in ${models[@]}; do | ||
| 107 | + rm -rf huggingface | ||
| 108 | + export GIT_LFS_SKIP_SMUDGE=1 | ||
| 109 | + export GIT_CLONE_PROTECTION_ACTIVE=false | ||
| 110 | + git clone https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/$m huggingface | ||
| 111 | + cp -av $m/* huggingface | ||
| 112 | + cd huggingface | ||
| 113 | + git lfs track "*.onnx" | ||
| 114 | + git lfs track "*.wav" | ||
| 115 | + git status | ||
| 116 | + git add . | ||
| 117 | + git status | ||
| 118 | + git commit -m "first commit" | ||
| 119 | + git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/$m main | ||
| 120 | + cd .. | ||
| 121 | + done | ||
| 122 | + | ||
| 123 | + - name: Release | ||
| 124 | + uses: svenstaro/upload-release-action@v2 | ||
| 125 | + with: | ||
| 126 | + file_glob: true | ||
| 127 | + file: ./*.tar.bz2 | ||
| 128 | + overwrite: true | ||
| 129 | + repo_name: k2-fsa/sherpa-onnx | ||
| 130 | + repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }} | ||
| 131 | + tag: asr-models |
| 1 | +#!/usr/bin/env python3 | ||
| 2 | +# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang) | ||
| 3 | + | ||
| 4 | +from pathlib import Path | ||
| 5 | +from typing import Dict | ||
| 6 | +import os | ||
| 7 | + | ||
| 8 | +import nemo.collections.asr as nemo_asr | ||
| 9 | +import onnx | ||
| 10 | +import onnxmltools | ||
| 11 | +import torch | ||
| 12 | +from onnxmltools.utils.float16_converter import ( | ||
| 13 | + convert_float_to_float16, | ||
| 14 | + convert_float_to_float16_model_path, | ||
| 15 | +) | ||
| 16 | +from onnxruntime.quantization import QuantType, quantize_dynamic | ||
| 17 | + | ||
| 18 | + | ||
| 19 | +def export_onnx_fp16(onnx_fp32_path, onnx_fp16_path): | ||
| 20 | + onnx_fp32_model = onnxmltools.utils.load_model(onnx_fp32_path) | ||
| 21 | + onnx_fp16_model = convert_float_to_float16(onnx_fp32_model, keep_io_types=True) | ||
| 22 | + onnxmltools.utils.save_model(onnx_fp16_model, onnx_fp16_path) | ||
| 23 | + | ||
| 24 | + | ||
| 25 | +def export_onnx_fp16_large_2gb(onnx_fp32_path, onnx_fp16_path): | ||
| 26 | + onnx_fp16_model = convert_float_to_float16_model_path( | ||
| 27 | + onnx_fp32_path, keep_io_types=True | ||
| 28 | + ) | ||
| 29 | + onnxmltools.utils.save_model(onnx_fp16_model, onnx_fp16_path) | ||
| 30 | + | ||
| 31 | + | ||
| 32 | +def add_meta_data(filename: str, meta_data: Dict[str, str]): | ||
| 33 | + """Add meta data to an ONNX model. It is changed in-place. | ||
| 34 | + | ||
| 35 | + Args: | ||
| 36 | + filename: | ||
| 37 | + Filename of the ONNX model to be changed. | ||
| 38 | + meta_data: | ||
| 39 | + Key-value pairs. | ||
| 40 | + """ | ||
| 41 | + model = onnx.load(filename) | ||
| 42 | + while len(model.metadata_props): | ||
| 43 | + model.metadata_props.pop() | ||
| 44 | + | ||
| 45 | + for key, value in meta_data.items(): | ||
| 46 | + meta = model.metadata_props.add() | ||
| 47 | + meta.key = key | ||
| 48 | + meta.value = str(value) | ||
| 49 | + | ||
| 50 | + onnx.save(model, filename) | ||
| 51 | + | ||
| 52 | + | ||
| 53 | +@torch.no_grad() | ||
| 54 | +def main(): | ||
| 55 | + asr_model = nemo_asr.models.ASRModel.from_pretrained( | ||
| 56 | + model_name="nvidia/parakeet-tdt-0.6b-v2" | ||
| 57 | + ) | ||
| 58 | + | ||
| 59 | + asr_model.eval() | ||
| 60 | + | ||
| 61 | + with open("./tokens.txt", "w", encoding="utf-8") as f: | ||
| 62 | + for i, s in enumerate(asr_model.joint.vocabulary): | ||
| 63 | + f.write(f"{s} {i}\n") | ||
| 64 | + f.write(f"<blk> {i+1}\n") | ||
| 65 | + print("Saved to tokens.txt") | ||
| 66 | + | ||
| 67 | + asr_model.encoder.export("encoder.onnx") | ||
| 68 | + asr_model.decoder.export("decoder.onnx") | ||
| 69 | + asr_model.joint.export("joiner.onnx") | ||
| 70 | + os.system("ls -lh *.onnx") | ||
| 71 | + | ||
| 72 | + normalize_type = asr_model.cfg.preprocessor.normalize | ||
| 73 | + if normalize_type == "NA": | ||
| 74 | + normalize_type = "" | ||
| 75 | + | ||
| 76 | + meta_data = { | ||
| 77 | + "vocab_size": asr_model.decoder.vocab_size, | ||
| 78 | + "normalize_type": normalize_type, | ||
| 79 | + "pred_rnn_layers": asr_model.decoder.pred_rnn_layers, | ||
| 80 | + "pred_hidden": asr_model.decoder.pred_hidden, | ||
| 81 | + "subsampling_factor": 8, | ||
| 82 | + "model_type": "EncDecRNNTBPEModel", | ||
| 83 | + "version": "2", | ||
| 84 | + "model_author": "NeMo", | ||
| 85 | + "url": "https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2", | ||
| 86 | + "comment": "Only the transducer branch is exported", | ||
| 87 | + "feat_dim": 128, | ||
| 88 | + } | ||
| 89 | + | ||
| 90 | + for m in ["encoder", "decoder", "joiner"]: | ||
| 91 | + quantize_dynamic( | ||
| 92 | + model_input=f"./{m}.onnx", | ||
| 93 | + model_output=f"./{m}.int8.onnx", | ||
| 94 | + weight_type=QuantType.QUInt8 if m == "encoder" else QuantType.QInt8, | ||
| 95 | + ) | ||
| 96 | + os.system("ls -lh *.onnx") | ||
| 97 | + | ||
| 98 | + if m == "encoder": | ||
| 99 | + export_onnx_fp16_large_2gb(f"{m}.onnx", f"{m}.fp16.onnx") | ||
| 100 | + else: | ||
| 101 | + export_onnx_fp16(f"{m}.onnx", f"{m}.fp16.onnx") | ||
| 102 | + | ||
| 103 | + add_meta_data("encoder.int8.onnx", meta_data) | ||
| 104 | + add_meta_data("encoder.fp16.onnx", meta_data) | ||
| 105 | + print("meta_data", meta_data) | ||
| 106 | + | ||
| 107 | + | ||
| 108 | +if __name__ == "__main__": | ||
| 109 | + main() |
scripts/nemo/parakeet-tdt-0.6b-v2/run.sh
0 → 100755
| 1 | +#!/usr/bin/env bash | ||
| 2 | +# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang) | ||
| 3 | + | ||
| 4 | +set -ex | ||
| 5 | + | ||
| 6 | +log() { | ||
| 7 | + # This function is from espnet | ||
| 8 | + local fname=${BASH_SOURCE[1]##*/} | ||
| 9 | + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" | ||
| 10 | +} | ||
| 11 | + | ||
| 12 | +curl -SL -O https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav | ||
| 13 | + | ||
| 14 | + | ||
| 15 | + | ||
| 16 | +pip install \ | ||
| 17 | + nemo_toolkit['asr'] \ | ||
| 18 | + "numpy<2" \ | ||
| 19 | + ipython \ | ||
| 20 | + kaldi-native-fbank \ | ||
| 21 | + librosa \ | ||
| 22 | + onnx==1.17.0 \ | ||
| 23 | + onnxmltools \ | ||
| 24 | + onnxruntime==1.17.1 \ | ||
| 25 | + soundfile | ||
| 26 | + | ||
| 27 | +python3 ./export_onnx.py | ||
| 28 | +ls -lh *.onnx | ||
| 29 | + | ||
| 30 | +echo "---fp32----" | ||
| 31 | +python3 ./test_onnx.py \ | ||
| 32 | + --encoder ./encoder.int8.onnx \ | ||
| 33 | + --decoder ./decoder.onnx \ | ||
| 34 | + --joiner ./joiner.onnx \ | ||
| 35 | + --tokens ./tokens.txt \ | ||
| 36 | + --wav 2086-149220-0033.wav | ||
| 37 | + | ||
| 38 | +echo "---int8----" | ||
| 39 | +python3 ./test_onnx.py \ | ||
| 40 | + --encoder ./encoder.int8.onnx \ | ||
| 41 | + --decoder ./decoder.int8.onnx \ | ||
| 42 | + --joiner ./joiner.int8.onnx \ | ||
| 43 | + --tokens ./tokens.txt \ | ||
| 44 | + --wav 2086-149220-0033.wav | ||
| 45 | + | ||
| 46 | +echo "---fp16----" | ||
| 47 | +python3 ./test_onnx.py \ | ||
| 48 | + --encoder ./encoder.fp16.onnx \ | ||
| 49 | + --decoder ./decoder.fp16.onnx \ | ||
| 50 | + --joiner ./joiner.fp16.onnx \ | ||
| 51 | + --tokens ./tokens.txt \ | ||
| 52 | + --wav 2086-149220-0033.wav |
| 1 | +#!/usr/bin/env python3 | ||
| 2 | +# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang) | ||
| 3 | +import argparse | ||
| 4 | +from pathlib import Path | ||
| 5 | + | ||
| 6 | +import kaldi_native_fbank as knf | ||
| 7 | +import librosa | ||
| 8 | +import numpy as np | ||
| 9 | +import onnxruntime as ort | ||
| 10 | +import soundfile as sf | ||
| 11 | +import torch | ||
| 12 | +import time | ||
| 13 | + | ||
| 14 | + | ||
| 15 | +def get_args(): | ||
| 16 | + parser = argparse.ArgumentParser() | ||
| 17 | + parser.add_argument( | ||
| 18 | + "--encoder", type=str, required=True, help="Path to encoder.onnx" | ||
| 19 | + ) | ||
| 20 | + parser.add_argument( | ||
| 21 | + "--decoder", type=str, required=True, help="Path to decoder.onnx" | ||
| 22 | + ) | ||
| 23 | + parser.add_argument("--joiner", type=str, required=True, help="Path to joiner.onnx") | ||
| 24 | + | ||
| 25 | + parser.add_argument("--tokens", type=str, required=True, help="Path to tokens.txt") | ||
| 26 | + | ||
| 27 | + parser.add_argument("--wav", type=str, required=True, help="Path to test.wav") | ||
| 28 | + | ||
| 29 | + return parser.parse_args() | ||
| 30 | + | ||
| 31 | + | ||
| 32 | +def create_fbank(): | ||
| 33 | + opts = knf.FbankOptions() | ||
| 34 | + opts.frame_opts.dither = 0 | ||
| 35 | + opts.frame_opts.remove_dc_offset = False | ||
| 36 | + opts.frame_opts.window_type = "hann" | ||
| 37 | + | ||
| 38 | + opts.mel_opts.low_freq = 0 | ||
| 39 | + opts.mel_opts.num_bins = 128 | ||
| 40 | + | ||
| 41 | + opts.mel_opts.is_librosa = True | ||
| 42 | + | ||
| 43 | + fbank = knf.OnlineFbank(opts) | ||
| 44 | + return fbank | ||
| 45 | + | ||
| 46 | + | ||
| 47 | +def compute_features(audio, fbank): | ||
| 48 | + assert len(audio.shape) == 1, audio.shape | ||
| 49 | + fbank.accept_waveform(16000, audio) | ||
| 50 | + ans = [] | ||
| 51 | + processed = 0 | ||
| 52 | + while processed < fbank.num_frames_ready: | ||
| 53 | + ans.append(np.array(fbank.get_frame(processed))) | ||
| 54 | + processed += 1 | ||
| 55 | + ans = np.stack(ans) | ||
| 56 | + return ans | ||
| 57 | + | ||
| 58 | + | ||
| 59 | +def display(sess, model): | ||
| 60 | + print(f"=========={model} Input==========") | ||
| 61 | + for i in sess.get_inputs(): | ||
| 62 | + print(i) | ||
| 63 | + print(f"=========={model }Output==========") | ||
| 64 | + for i in sess.get_outputs(): | ||
| 65 | + print(i) | ||
| 66 | + | ||
| 67 | + | ||
| 68 | +class OnnxModel: | ||
| 69 | + def __init__( | ||
| 70 | + self, | ||
| 71 | + encoder: str, | ||
| 72 | + decoder: str, | ||
| 73 | + joiner: str, | ||
| 74 | + ): | ||
| 75 | + self.init_encoder(encoder) | ||
| 76 | + display(self.encoder, "encoder") | ||
| 77 | + self.init_decoder(decoder) | ||
| 78 | + display(self.decoder, "decoder") | ||
| 79 | + self.init_joiner(joiner) | ||
| 80 | + display(self.joiner, "joiner") | ||
| 81 | + | ||
| 82 | + def init_encoder(self, encoder): | ||
| 83 | + session_opts = ort.SessionOptions() | ||
| 84 | + session_opts.inter_op_num_threads = 1 | ||
| 85 | + session_opts.intra_op_num_threads = 1 | ||
| 86 | + | ||
| 87 | + self.encoder = ort.InferenceSession( | ||
| 88 | + encoder, | ||
| 89 | + sess_options=session_opts, | ||
| 90 | + providers=["CPUExecutionProvider"], | ||
| 91 | + ) | ||
| 92 | + | ||
| 93 | + meta = self.encoder.get_modelmeta().custom_metadata_map | ||
| 94 | + self.normalize_type = meta["normalize_type"] | ||
| 95 | + print(meta) | ||
| 96 | + | ||
| 97 | + self.pred_rnn_layers = int(meta["pred_rnn_layers"]) | ||
| 98 | + self.pred_hidden = int(meta["pred_hidden"]) | ||
| 99 | + | ||
| 100 | + def init_decoder(self, decoder): | ||
| 101 | + session_opts = ort.SessionOptions() | ||
| 102 | + session_opts.inter_op_num_threads = 1 | ||
| 103 | + session_opts.intra_op_num_threads = 1 | ||
| 104 | + | ||
| 105 | + self.decoder = ort.InferenceSession( | ||
| 106 | + decoder, | ||
| 107 | + sess_options=session_opts, | ||
| 108 | + providers=["CPUExecutionProvider"], | ||
| 109 | + ) | ||
| 110 | + | ||
| 111 | + def init_joiner(self, joiner): | ||
| 112 | + session_opts = ort.SessionOptions() | ||
| 113 | + session_opts.inter_op_num_threads = 1 | ||
| 114 | + session_opts.intra_op_num_threads = 1 | ||
| 115 | + | ||
| 116 | + self.joiner = ort.InferenceSession( | ||
| 117 | + joiner, | ||
| 118 | + sess_options=session_opts, | ||
| 119 | + providers=["CPUExecutionProvider"], | ||
| 120 | + ) | ||
| 121 | + | ||
| 122 | + def get_decoder_state(self): | ||
| 123 | + batch_size = 1 | ||
| 124 | + state0 = torch.zeros(self.pred_rnn_layers, batch_size, self.pred_hidden).numpy() | ||
| 125 | + state1 = torch.zeros(self.pred_rnn_layers, batch_size, self.pred_hidden).numpy() | ||
| 126 | + return state0, state1 | ||
| 127 | + | ||
| 128 | + def run_encoder(self, x: np.ndarray): | ||
| 129 | + # x: (T, C) | ||
| 130 | + x = torch.from_numpy(x) | ||
| 131 | + x = x.t().unsqueeze(0) | ||
| 132 | + # x: [1, C, T] | ||
| 133 | + x_lens = torch.tensor([x.shape[-1]], dtype=torch.int64) | ||
| 134 | + | ||
| 135 | + (encoder_out, out_len) = self.encoder.run( | ||
| 136 | + [ | ||
| 137 | + self.encoder.get_outputs()[0].name, | ||
| 138 | + self.encoder.get_outputs()[1].name, | ||
| 139 | + ], | ||
| 140 | + { | ||
| 141 | + self.encoder.get_inputs()[0].name: x.numpy(), | ||
| 142 | + self.encoder.get_inputs()[1].name: x_lens.numpy(), | ||
| 143 | + }, | ||
| 144 | + ) | ||
| 145 | + # [batch_size, dim, T] | ||
| 146 | + return encoder_out | ||
| 147 | + | ||
| 148 | + def run_decoder( | ||
| 149 | + self, | ||
| 150 | + token: int, | ||
| 151 | + state0: np.ndarray, | ||
| 152 | + state1: np.ndarray, | ||
| 153 | + ): | ||
| 154 | + target = torch.tensor([[token]], dtype=torch.int32).numpy() | ||
| 155 | + target_len = torch.tensor([1], dtype=torch.int32).numpy() | ||
| 156 | + | ||
| 157 | + (decoder_out, decoder_out_length, state0_next, state1_next,) = self.decoder.run( | ||
| 158 | + [ | ||
| 159 | + self.decoder.get_outputs()[0].name, | ||
| 160 | + self.decoder.get_outputs()[1].name, | ||
| 161 | + self.decoder.get_outputs()[2].name, | ||
| 162 | + self.decoder.get_outputs()[3].name, | ||
| 163 | + ], | ||
| 164 | + { | ||
| 165 | + self.decoder.get_inputs()[0].name: target, | ||
| 166 | + self.decoder.get_inputs()[1].name: target_len, | ||
| 167 | + self.decoder.get_inputs()[2].name: state0, | ||
| 168 | + self.decoder.get_inputs()[3].name: state1, | ||
| 169 | + }, | ||
| 170 | + ) | ||
| 171 | + return decoder_out, state0_next, state1_next | ||
| 172 | + | ||
| 173 | + def run_joiner( | ||
| 174 | + self, | ||
| 175 | + encoder_out: np.ndarray, | ||
| 176 | + decoder_out: np.ndarray, | ||
| 177 | + ): | ||
| 178 | + # encoder_out: [batch_size, dim, 1] | ||
| 179 | + # decoder_out: [batch_size, dim, 1] | ||
| 180 | + logit = self.joiner.run( | ||
| 181 | + [ | ||
| 182 | + self.joiner.get_outputs()[0].name, | ||
| 183 | + ], | ||
| 184 | + { | ||
| 185 | + self.joiner.get_inputs()[0].name: encoder_out, | ||
| 186 | + self.joiner.get_inputs()[1].name: decoder_out, | ||
| 187 | + }, | ||
| 188 | + )[0] | ||
| 189 | + # logit: [batch_size, 1, 1, vocab_size] | ||
| 190 | + return logit | ||
| 191 | + | ||
| 192 | + | ||
| 193 | +def main(): | ||
| 194 | + args = get_args() | ||
| 195 | + assert Path(args.encoder).is_file(), args.encoder | ||
| 196 | + assert Path(args.decoder).is_file(), args.decoder | ||
| 197 | + assert Path(args.joiner).is_file(), args.joiner | ||
| 198 | + assert Path(args.tokens).is_file(), args.tokens | ||
| 199 | + assert Path(args.wav).is_file(), args.wav | ||
| 200 | + | ||
| 201 | + print(vars(args)) | ||
| 202 | + | ||
| 203 | + model = OnnxModel(args.encoder, args.decoder, args.joiner) | ||
| 204 | + | ||
| 205 | + id2token = dict() | ||
| 206 | + with open(args.tokens, encoding="utf-8") as f: | ||
| 207 | + for line in f: | ||
| 208 | + t, idx = line.split() | ||
| 209 | + id2token[int(idx)] = t | ||
| 210 | + | ||
| 211 | + start = time.time() | ||
| 212 | + fbank = create_fbank() | ||
| 213 | + audio, sample_rate = sf.read(args.wav, dtype="float32", always_2d=True) | ||
| 214 | + audio = audio[:, 0] # only use the first channel | ||
| 215 | + if sample_rate != 16000: | ||
| 216 | + audio = librosa.resample( | ||
| 217 | + audio, | ||
| 218 | + orig_sr=sample_rate, | ||
| 219 | + target_sr=16000, | ||
| 220 | + ) | ||
| 221 | + sample_rate = 16000 | ||
| 222 | + | ||
| 223 | + tail_padding = np.zeros(sample_rate * 2) | ||
| 224 | + | ||
| 225 | + audio = np.concatenate([audio, tail_padding]) | ||
| 226 | + | ||
| 227 | + blank = len(id2token) - 1 | ||
| 228 | + ans = [blank] | ||
| 229 | + state0, state1 = model.get_decoder_state() | ||
| 230 | + decoder_out, state0_next, state1_next = model.run_decoder(ans[-1], state0, state1) | ||
| 231 | + | ||
| 232 | + features = compute_features(audio, fbank) | ||
| 233 | + if model.normalize_type != "": | ||
| 234 | + assert model.normalize_type == "per_feature", model.normalize_type | ||
| 235 | + features = torch.from_numpy(features) | ||
| 236 | + mean = features.mean(dim=1, keepdims=True) | ||
| 237 | + stddev = features.std(dim=1, keepdims=True) + 1e-5 | ||
| 238 | + features = (features - mean) / stddev | ||
| 239 | + features = features.numpy() | ||
| 240 | + print(audio.shape) | ||
| 241 | + print("features.shape", features.shape) | ||
| 242 | + | ||
| 243 | + encoder_out = model.run_encoder(features) | ||
| 244 | + # encoder_out:[batch_size, dim, T) | ||
| 245 | + for t in range(encoder_out.shape[2]): | ||
| 246 | + encoder_out_t = encoder_out[:, :, t : t + 1] | ||
| 247 | + logits = model.run_joiner(encoder_out_t, decoder_out) | ||
| 248 | + logits = torch.from_numpy(logits) | ||
| 249 | + logits = logits.squeeze() | ||
| 250 | + idx = torch.argmax(logits, dim=-1).item() | ||
| 251 | + if idx != blank: | ||
| 252 | + ans.append(idx) | ||
| 253 | + state0 = state0_next | ||
| 254 | + state1 = state1_next | ||
| 255 | + decoder_out, state0_next, state1_next = model.run_decoder( | ||
| 256 | + ans[-1], state0, state1 | ||
| 257 | + ) | ||
| 258 | + | ||
| 259 | + end = time.time() | ||
| 260 | + | ||
| 261 | + elapsed_seconds = end - start | ||
| 262 | + audio_duration = audio.shape[0] / 16000 | ||
| 263 | + real_time_factor = elapsed_seconds / audio_duration | ||
| 264 | + | ||
| 265 | + ans = ans[1:] # remove the first blank | ||
| 266 | + tokens = [id2token[i] for i in ans] | ||
| 267 | + underline = "▁" | ||
| 268 | + # underline = b"\xe2\x96\x81".decode() | ||
| 269 | + text = "".join(tokens).replace(underline, " ").strip() | ||
| 270 | + | ||
| 271 | + print(ans) | ||
| 272 | + print(args.wav) | ||
| 273 | + print(text) | ||
| 274 | + print(f"RTF: {real_time_factor}") | ||
| 275 | + | ||
| 276 | + | ||
| 277 | +if __name__ == "__main__": | ||
| 278 | + main() |
-
请 注册 或 登录 后发表评论