Fangjun Kuang
Committed by GitHub

Add Python API for source separation (#2283)

... ... @@ -8,6 +8,32 @@ log() {
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "test spleeter"
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/sherpa-onnx-spleeter-2stems-fp16.tar.bz2
tar xvf sherpa-onnx-spleeter-2stems-fp16.tar.bz2
rm sherpa-onnx-spleeter-2stems-fp16.tar.bz2
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/qi-feng-le-zh.wav
./python-api-examples/offline-source-separation-spleeter.py
rm -rf sherpa-onnx-spleeter-2stems-fp16
rm qi-feng-le-zh.wav
log "test UVR"
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/UVR_MDXNET_9482.onnx
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/qi-feng-le-zh.wav
./python-api-examples/offline-source-separation-uvr.py
rm UVR_MDXNET_9482.onnx
rm qi-feng-le-zh.wav
mkdir source-separation
mv spleeter-*.wav source-separation
mv uvr-*.wav source-separation
ls -lh source-separation
log "test offline dolphin ctc"
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
tar xvf sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02.tar.bz2
... ...
... ... @@ -99,5 +99,10 @@ jobs:
- uses: actions/upload-artifact@v4
with:
name: source-separation-${{ matrix.os }}-${{ matrix.python-version }}
path: ./source-separation
- uses: actions/upload-artifact@v4
with:
name: tts-generated-test-files-${{ matrix.os }}-${{ matrix.python-version }}
path: tts
... ...
... ... @@ -36,22 +36,18 @@ jobs:
fail-fast: false
matrix:
include:
# it fails to install ffmpeg on ubuntu 20.04
#
# - os: ubuntu-20.04
# python-version: "3.7"
# - os: ubuntu-20.04
# python-version: "3.8"
# - os: ubuntu-20.04
# python-version: "3.9"
- os: ubuntu-22.04
- os: ubuntu-24.04
python-version: "3.8"
- os: ubuntu-24.04
python-version: "3.9"
- os: ubuntu-24.04
python-version: "3.10"
- os: ubuntu-22.04
- os: ubuntu-24.04
python-version: "3.11"
- os: ubuntu-22.04
- os: ubuntu-24.04
python-version: "3.12"
- os: ubuntu-22.04
- os: ubuntu-24.04
python-version: "3.13"
steps:
... ... @@ -81,10 +77,12 @@ jobs:
python3 -m pip install --upgrade pip numpy pypinyin sentencepiece>=0.1.96 soundfile
python3 -m pip install wheel twine setuptools
- name: Install ffmpeg
shell: bash
run: |
sudo apt-get install ffmpeg
- uses: afoley587/setup-ffmpeg@main
id: setup-ffmpeg
with:
ffmpeg-version: release
architecture: ''
github-token: ${{ github.server_url == 'https://github.com' && github.token || '' }}
- name: Install ninja
shell: bash
... ... @@ -191,5 +189,10 @@ jobs:
- uses: actions/upload-artifact@v4
with:
name: source-separation-${{ matrix.os }}-${{ matrix.python-version }}-whl
path: ./source-separation
- uses: actions/upload-artifact@v4
with:
name: tts-generated-test-files-${{ matrix.os }}-${{ matrix.python-version }}
path: tts
... ...
#!/usr/bin/env python3
# Copyright (c) 2025 Xiaomi Corporation
"""
This file shows how to use spleeter for source separation.
Please first download a spleeter model from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/source-separation-models
The following is an example:
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/sherpa-onnx-spleeter-2stems-fp16.tar.bz2
Please also download a test file
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/qi-feng-le-zh.wav
The test wav file is 16-bit encoded with 2 channels. If you have other
formats, e.g., .mp4 or .mp3, please first use ffmpeg to convert it.
For instance
ffmpeg -i your.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 out.wav
Then you can use out.wav as input for this example.
"""
import time
from pathlib import Path
import numpy as np
import sherpa_onnx
import soundfile as sf
def create_offline_source_separation():
# Please read the help message at the beginning of this file
# to download model files
vocals = "./sherpa-onnx-spleeter-2stems-fp16/vocals.fp16.onnx"
accompaniment = "./sherpa-onnx-spleeter-2stems-fp16/accompaniment.fp16.onnx"
if not Path(vocals).is_file():
raise ValueError(f"{vocals} does not exist.")
if not Path(accompaniment).is_file():
raise ValueError(f"{accompaniment} does not exist.")
config = sherpa_onnx.OfflineSourceSeparationConfig(
model=sherpa_onnx.OfflineSourceSeparationModelConfig(
spleeter=sherpa_onnx.OfflineSourceSeparationSpleeterModelConfig(
vocals=vocals,
accompaniment=accompaniment,
),
num_threads=1,
debug=False,
provider="cpu",
)
)
if not config.validate():
raise ValueError("Please check your config.")
return sherpa_onnx.OfflineSourceSeparation(config)
def load_audio():
# Please read the help message at the beginning of this file to download
# the following wav_file
wav_file = "./qi-feng-le-zh.wav"
if not Path(wav_file).is_file():
raise ValueError(f"{wav_file} does not exist")
samples, sample_rate = sf.read(wav_file, dtype="float32", always_2d=True)
samples = np.transpose(samples)
# now samples is of shape (num_channels, num_samples)
assert (
samples.shape[1] > samples.shape[0]
), f"You should use (num_channels, num_samples). {samples.shape}"
assert (
samples.dtype == np.float32
), f"Expect np.float32 as dtype. Given: {samples.dtype}"
return samples, sample_rate
def main():
sp = create_offline_source_separation()
samples, sample_rate = load_audio()
samples = np.ascontiguousarray(samples)
start = time.time()
output = sp.process(sample_rate=sample_rate, samples=samples)
end = time.time()
print("output.sample_rate", output.sample_rate)
assert len(output.stems) == 2, len(output.stems)
vocals = output.stems[0].data
non_vocals = output.stems[1].data
# vocals.shape (num_channels, num_samples)
vocals = np.transpose(vocals)
non_vocals = np.transpose(non_vocals)
# vocals.shape (num_samples,num_channels)
sf.write("./spleeter-vocals.wav", vocals, samplerate=output.sample_rate)
sf.write("./spleeter-non-vocals.wav", non_vocals, samplerate=output.sample_rate)
elapsed_seconds = end - start
audio_duration = samples.shape[1] / sample_rate
real_time_factor = elapsed_seconds / audio_duration
print("Saved to ./spleeter-vocals.wav and ./spleeter-non-vocals.wav")
print(f"Elapsed seconds: {elapsed_seconds:.3f}")
print(f"Audio duration in seconds: {audio_duration:.3f}")
print(f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env python3
# Copyright (c) 2025 Xiaomi Corporation
"""
This file shows how to use UVR for source separation.
Please first download a UVR model from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/source-separation-models
The following is an example:
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/UVR_MDXNET_9482.onnx
Please also download a test file
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/qi-feng-le-zh.wav
The test wav file is 16-bit encoded with 2 channels. If you have other
formats, e.g., .mp4 or .mp3, please first use ffmpeg to convert it.
For instance
ffmpeg -i your.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 out.wav
Then you can use out.wav as input for this example.
"""
import time
from pathlib import Path
import numpy as np
import sherpa_onnx
import soundfile as sf
def create_offline_source_separation():
# Please read the help message at the beginning of this file
# to download model files
model = "./UVR_MDXNET_9482.onnx"
if not Path(model).is_file():
raise ValueError(f"{model} does not exist.")
config = sherpa_onnx.OfflineSourceSeparationConfig(
model=sherpa_onnx.OfflineSourceSeparationModelConfig(
uvr=sherpa_onnx.OfflineSourceSeparationUvrModelConfig(
model=model,
),
num_threads=1,
debug=False,
provider="cpu",
)
)
if not config.validate():
raise ValueError("Please check your config.")
return sherpa_onnx.OfflineSourceSeparation(config)
def load_audio():
# Please read the help message at the beginning of this file to download
# the following wav_file
wav_file = "./qi-feng-le-zh.wav"
if not Path(wav_file).is_file():
raise ValueError(f"{wav_file} does not exist")
samples, sample_rate = sf.read(wav_file, dtype="float32", always_2d=True)
samples = np.transpose(samples)
# now samples is of shape (num_channels, num_samples)
assert (
samples.shape[1] > samples.shape[0]
), f"You should use (num_channels, num_samples). {samples.shape}"
assert (
samples.dtype == np.float32
), f"Expect np.float32 as dtype. Given: {samples.dtype}"
return samples, sample_rate
def main():
sp = create_offline_source_separation()
samples, sample_rate = load_audio()
samples = np.ascontiguousarray(samples)
print("Started. Please wait")
start = time.time()
output = sp.process(sample_rate=sample_rate, samples=samples)
end = time.time()
print("output.sample_rate", output.sample_rate)
assert len(output.stems) == 2, len(output.stems)
vocals = output.stems[0].data
non_vocals = output.stems[1].data
# vocals.shape (num_channels, num_samples)
vocals = np.transpose(vocals)
non_vocals = np.transpose(non_vocals)
# vocals.shape (num_samples,num_channels)
sf.write("./uvr-vocals.wav", vocals, samplerate=output.sample_rate)
sf.write("./uvr-non-vocals.wav", non_vocals, samplerate=output.sample_rate)
elapsed_seconds = end - start
audio_duration = samples.shape[1] / sample_rate
real_time_factor = elapsed_seconds / audio_duration
print("Saved to ./uvr-vocals.wav and ./uvr-non-vocals.wav")
print(f"Elapsed seconds: {elapsed_seconds:.3f}")
print(f"Audio duration in seconds: {audio_duration:.3f}")
print(f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")
if __name__ == "__main__":
main()
... ...
... ... @@ -20,6 +20,10 @@ set(srcs
offline-punctuation.cc
offline-recognizer.cc
offline-sense-voice-model-config.cc
offline-source-separation-model-config.cc
offline-source-separation-spleeter-model-config.cc
offline-source-separation-uvr-model-config.cc
offline-source-separation.cc
offline-speech-denoiser-gtcrn-model-config.cc
offline-speech-denoiser-model-config.cc
offline-speech-denoiser.cc
... ...
... ... @@ -9,6 +9,8 @@
#include "sherpa-onnx/csrc/fast-clustering.h"
#define C_CONTIGUOUS py::detail::npy_api::constants::NPY_ARRAY_C_CONTIGUOUS_
namespace sherpa_onnx {
static void PybindFastClusteringConfig(py::module *m) {
... ... @@ -32,6 +34,12 @@ void PybindFastClustering(py::module *m) {
"__call__",
[](const PyClass &self,
py::array_t<float> features) -> std::vector<int32_t> {
if (!(C_CONTIGUOUS == (features.flags() & C_CONTIGUOUS))) {
throw py::value_error(
"input features should be contiguous. Please use "
"np.ascontiguousarray(features)");
}
int num_dim = features.ndim();
if (num_dim != 2) {
std::ostringstream os;
... ...
... ... @@ -59,14 +59,14 @@ void PybindOfflineRecognizer(py::module *m) {
return self.CreateStream(hotwords);
},
py::arg("hotwords"), py::call_guard<py::gil_scoped_release>())
.def("decode_stream", &PyClass::DecodeStream,
.def("decode_stream", &PyClass::DecodeStream, py::arg("s"),
py::call_guard<py::gil_scoped_release>())
.def(
"decode_streams",
[](const PyClass &self, std::vector<OfflineStream *> ss) {
self.DecodeStreams(ss.data(), ss.size());
},
py::call_guard<py::gil_scoped_release>());
py::arg("ss"), py::call_guard<py::gil_scoped_release>());
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/python/csrc/offline-source-separation-model-config.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include "sherpa-onnx/python/csrc/offline-source-separation-model-config.h"
#include <string>
#include "sherpa-onnx/csrc/offline-source-separation-model-config.h"
#include "sherpa-onnx/python/csrc/offline-source-separation-spleeter-model-config.h"
#include "sherpa-onnx/python/csrc/offline-source-separation-uvr-model-config.h"
namespace sherpa_onnx {
void PybindOfflineSourceSeparationModelConfig(py::module *m) {
PybindOfflineSourceSeparationSpleeterModelConfig(m);
PybindOfflineSourceSeparationUvrModelConfig(m);
using PyClass = OfflineSourceSeparationModelConfig;
py::class_<PyClass>(*m, "OfflineSourceSeparationModelConfig")
.def(py::init<const OfflineSourceSeparationSpleeterModelConfig &,
const OfflineSourceSeparationUvrModelConfig &, int32_t,
bool, const std::string &>(),
py::arg("spleeter") = OfflineSourceSeparationSpleeterModelConfig{},
py::arg("uvr") = OfflineSourceSeparationUvrModelConfig{},
py::arg("num_threads") = 1, py::arg("debug") = false,
py::arg("provider") = "cpu")
.def_readwrite("spleeter", &PyClass::spleeter)
.def_readwrite("uvr", &PyClass::uvr)
.def_readwrite("num_threads", &PyClass::num_threads)
.def_readwrite("debug", &PyClass::debug)
.def_readwrite("provider", &PyClass::provider)
.def("validate", &PyClass::Validate)
.def("__str__", &PyClass::ToString);
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/python/csrc/offline-source-separation-model-config.h
//
// Copyright (c) 2025 Xiaomi Corporation
#ifndef SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_MODEL_CONFIG_H_
#define SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_MODEL_CONFIG_H_
#include "sherpa-onnx/python/csrc/sherpa-onnx.h"
namespace sherpa_onnx {
void PybindOfflineSourceSeparationModelConfig(py::module *m);
}
#endif // SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_MODEL_CONFIG_H_
... ...
// sherpa-onnx/python/csrc/offline-source-separation-spleeter-model-config.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include "sherpa-onnx/python/csrc/offline-source-separation-spleeter-model-config.h"
#include <string>
#include "sherpa-onnx/csrc/offline-source-separation-spleeter-model-config.h"
namespace sherpa_onnx {
void PybindOfflineSourceSeparationSpleeterModelConfig(py::module *m) {
using PyClass = OfflineSourceSeparationSpleeterModelConfig;
py::class_<PyClass>(*m, "OfflineSourceSeparationSpleeterModelConfig")
.def(py::init<const std::string &, const std::string &>(),
py::arg("vocals") = "", py::arg("accompaniment") = "")
.def_readwrite("vocals", &PyClass::vocals)
.def_readwrite("accompaniment", &PyClass::accompaniment)
.def("validate", &PyClass::Validate)
.def("__str__", &PyClass::ToString);
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/python/csrc/offline-source-separation-spleeter-model-config.h
//
// Copyright (c) 2025 Xiaomi Corporation
#ifndef SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_SPLEETER_MODEL_CONFIG_H_
#define SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_SPLEETER_MODEL_CONFIG_H_
#include "sherpa-onnx/python/csrc/sherpa-onnx.h"
namespace sherpa_onnx {
void PybindOfflineSourceSeparationSpleeterModelConfig(py::module *m);
}
#endif // SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_SPLEETER_MODEL_CONFIG_H_
... ...
// sherpa-onnx/python/csrc/offline-source-separation-uvr-model-config.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include "sherpa-onnx/python/csrc/offline-source-separation-uvr-model-config.h"
#include <string>
#include "sherpa-onnx/csrc/offline-source-separation-uvr-model-config.h"
namespace sherpa_onnx {
void PybindOfflineSourceSeparationUvrModelConfig(py::module *m) {
using PyClass = OfflineSourceSeparationUvrModelConfig;
py::class_<PyClass>(*m, "OfflineSourceSeparationUvrModelConfig")
.def(py::init<const std::string &>(), py::arg("model") = "")
.def_readwrite("model", &PyClass::model)
.def("validate", &PyClass::Validate)
.def("__str__", &PyClass::ToString);
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/python/csrc/offline-source-separation-uvr-model-config.h
//
// Copyright (c) 2025 Xiaomi Corporation
#ifndef SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_UVR_MODEL_CONFIG_H_
#define SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_UVR_MODEL_CONFIG_H_
#include "sherpa-onnx/python/csrc/sherpa-onnx.h"
namespace sherpa_onnx {
void PybindOfflineSourceSeparationUvrModelConfig(py::module *m);
}
#endif // SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_UVR_MODEL_CONFIG_H_
... ...
// sherpa-onnx/python/csrc/offline-source-separation-config.cc
//
// Copyright (c) 2025 Xiaomi Corporation
#include "sherpa-onnx/csrc/offline-source-separation.h"
#include <string>
#include "sherpa-onnx/python/csrc/offline-source-separation-model-config.h"
#include "sherpa-onnx/python/csrc/offline-source-separation.h"
#define C_CONTIGUOUS py::detail::npy_api::constants::NPY_ARRAY_C_CONTIGUOUS_
namespace sherpa_onnx {
static void PybindOfflineSourceSeparationConfig(py::module *m) {
PybindOfflineSourceSeparationModelConfig(m);
using PyClass = OfflineSourceSeparationConfig;
py::class_<PyClass>(*m, "OfflineSourceSeparationConfig")
.def(py::init<const OfflineSourceSeparationModelConfig &>(),
py::arg("model") = OfflineSourceSeparationModelConfig{})
.def_readwrite("model", &PyClass::model)
.def("validate", &PyClass::Validate)
.def("__str__", &PyClass::ToString);
}
static void PybindMultiChannelSamples(py::module *m) {
using PyClass = MultiChannelSamples;
py::class_<PyClass>(*m, "MultiChannelSamples")
.def_property_readonly("data", [](PyClass &self) -> py::object {
// if data is not empty, return a float array of
// shape (num_channels, num_samples)
int32_t num_channels = self.data.size();
if (num_channels == 0) {
return py::none();
}
int32_t num_samples = self.data[0].size();
if (num_samples == 0) {
return py::none();
}
py::array_t<float> ans({num_channels, num_samples});
py::buffer_info buf = ans.request();
auto p = static_cast<float *>(buf.ptr);
for (int32_t i = 0; i != num_channels; ++i) {
std::copy(self.data[i].begin(), self.data[i].end(),
p + i * num_samples);
}
return ans;
});
}
static void PybindOfflineSourceSeparationOutput(py::module *m) {
using PyClass = OfflineSourceSeparationOutput;
py::class_<PyClass>(*m, "OfflineSourceSeparationOutput")
.def_property_readonly(
"sample_rate", [](const PyClass &self) { return self.sample_rate; })
.def_property_readonly("stems",
[](const PyClass &self) { return self.stems; });
}
void PybindOfflineSourceSeparation(py::module *m) {
PybindOfflineSourceSeparationConfig(m);
PybindOfflineSourceSeparationOutput(m);
PybindMultiChannelSamples(m);
using PyClass = OfflineSourceSeparation;
py::class_<PyClass>(*m, "OfflineSourceSeparation")
.def(py::init<const OfflineSourceSeparationConfig &>(),
py::arg("config") = OfflineSourceSeparationConfig{})
.def(
"process",
[](const PyClass &self, int32_t sample_rate,
const py::array_t<float> &samples) {
if (!(C_CONTIGUOUS == (samples.flags() & C_CONTIGUOUS))) {
throw py::value_error(
"input samples should be contiguous. Please use "
"np.ascontiguousarray(samples)");
}
int num_dim = samples.ndim();
if (samples.ndim() != 2) {
std::ostringstream os;
os << "Expect an array of 2 dimensions [num_channels x "
"num_samples]. "
"Given dim: "
<< num_dim << "\n";
throw py::value_error(os.str());
}
// if num_samples is less than 10, it is very likely the user
// has swapped num_channels and num_samples.
if (samples.shape(1) < 10) {
std::ostringstream os;
os << "Expect an array of 2 dimensions [num_channels x "
"num_samples]. "
"Given ["
<< samples.shape(0) << " x " << samples.shape(1) << "]"
<< "\n";
throw py::value_error(os.str());
}
int32_t num_channels = samples.shape(0);
int32_t num_samples = samples.shape(1);
const float *p = samples.data();
OfflineSourceSeparationInput input;
input.samples.data.resize(num_channels);
input.sample_rate = sample_rate;
for (int32_t i = 0; i != num_channels; ++i) {
input.samples.data[i] = {p + i * num_samples,
p + (i + 1) * num_samples};
}
pybind11::gil_scoped_release release;
return self.Process(input);
},
py::arg("sample_rate"), py::arg("samples"),
"samples is of shape (num_channels, num-samples) with dtype "
"np.float32");
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/python/csrc/offline-source-separation-config.h
//
// Copyright (c) 2025 Xiaomi Corporation
#ifndef SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_CONFIG_H_
#define SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_CONFIG_H_
#include "sherpa-onnx/python/csrc/sherpa-onnx.h"
namespace sherpa_onnx {
void PybindOfflineSourceSeparation(py::module *m);
}
#endif // SHERPA_ONNX_PYTHON_CSRC_OFFLINE_SOURCE_SEPARATION_CONFIG_H_
... ...
... ... @@ -47,6 +47,7 @@ void PybindOfflineSpeechDenoiser(py::module *m) {
int32_t sample_rate) {
return self.Run(samples.data(), samples.size(), sample_rate);
},
py::arg("samples"), py::arg("sample_rate"),
py::call_guard<py::gil_scoped_release>())
.def(
"run",
... ... @@ -54,6 +55,7 @@ void PybindOfflineSpeechDenoiser(py::module *m) {
int32_t sample_rate) {
return self.Run(samples.data(), samples.size(), sample_rate);
},
py::arg("samples"), py::arg("sample_rate"),
py::call_guard<py::gil_scoped_release>())
.def_property_readonly("sample_rate", &PyClass::GetSampleRate);
}
... ...
... ... @@ -109,19 +109,20 @@ void PybindOnlineRecognizer(py::module *m) {
py::arg("hotwords"), py::call_guard<py::gil_scoped_release>())
.def("is_ready", &PyClass::IsReady,
py::call_guard<py::gil_scoped_release>())
.def("decode_stream", &PyClass::DecodeStream,
.def("decode_stream", &PyClass::DecodeStream, py::arg("s"),
py::call_guard<py::gil_scoped_release>())
.def(
"decode_streams",
[](PyClass &self, std::vector<OnlineStream *> ss) {
self.DecodeStreams(ss.data(), ss.size());
},
py::call_guard<py::gil_scoped_release>())
.def("get_result", &PyClass::GetResult,
py::arg("ss"), py::call_guard<py::gil_scoped_release>())
.def("get_result", &PyClass::GetResult, py::arg("s"),
py::call_guard<py::gil_scoped_release>())
.def("is_endpoint", &PyClass::IsEndpoint,
.def("is_endpoint", &PyClass::IsEndpoint, py::arg("s"),
py::call_guard<py::gil_scoped_release>())
.def("reset", &PyClass::Reset, py::call_guard<py::gil_scoped_release>());
.def("reset", &PyClass::Reset, py::arg("s"),
py::call_guard<py::gil_scoped_release>());
}
} // namespace sherpa_onnx
... ...
... ... @@ -17,6 +17,7 @@
#include "sherpa-onnx/python/csrc/offline-model-config.h"
#include "sherpa-onnx/python/csrc/offline-punctuation.h"
#include "sherpa-onnx/python/csrc/offline-recognizer.h"
#include "sherpa-onnx/python/csrc/offline-source-separation.h"
#include "sherpa-onnx/python/csrc/offline-speech-denoiser.h"
#include "sherpa-onnx/python/csrc/offline-stream.h"
#include "sherpa-onnx/python/csrc/online-ctc-fst-decoder-config.h"
... ... @@ -110,6 +111,7 @@ PYBIND11_MODULE(_sherpa_onnx, m) {
PybindAlsa(&m);
PybindOfflineSpeechDenoiser(&m);
PybindOfflineSourceSeparation(&m);
}
} // namespace sherpa_onnx
... ...
... ... @@ -11,6 +11,11 @@ from _sherpa_onnx import (
OfflinePunctuation,
OfflinePunctuationConfig,
OfflinePunctuationModelConfig,
OfflineSourceSeparation,
OfflineSourceSeparationConfig,
OfflineSourceSeparationModelConfig,
OfflineSourceSeparationSpleeterModelConfig,
OfflineSourceSeparationUvrModelConfig,
OfflineSpeakerDiarization,
OfflineSpeakerDiarizationConfig,
OfflineSpeakerDiarizationResult,
... ...