keanu
Committed by GitHub

Offline decode support multi threads (#306)

Co-authored-by: cuidongcai1035 <cuidongcai1035@wezhuiyi.com>
... ... @@ -85,9 +85,12 @@ set(sources
if(SHERPA_ONNX_ENABLE_CHECK)
list(APPEND sources log.cc)
endif()
add_library(sherpa-onnx-core ${sources})
if(NOT WIN32)
target_link_libraries(sherpa-onnx-core -pthread)
endif()
if(ANDROID_NDK)
target_link_libraries(sherpa-onnx-core android log)
endif()
... ... @@ -121,19 +124,23 @@ endif()
add_executable(sherpa-onnx sherpa-onnx.cc)
add_executable(sherpa-onnx-offline sherpa-onnx-offline.cc)
add_executable(sherpa-onnx-offline-parallel sherpa-onnx-offline-parallel.cc)
target_link_libraries(sherpa-onnx sherpa-onnx-core)
target_link_libraries(sherpa-onnx-offline sherpa-onnx-core)
target_link_libraries(sherpa-onnx-offline-parallel sherpa-onnx-core)
if(NOT WIN32)
target_link_libraries(sherpa-onnx "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../lib")
target_link_libraries(sherpa-onnx "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../../../sherpa_onnx/lib")
target_link_libraries(sherpa-onnx-offline "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../lib")
target_link_libraries(sherpa-onnx-offline "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../../../sherpa_onnx/lib")
target_link_libraries(sherpa-onnx-offline-parallel "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../../../sherpa_onnx/lib")
if(SHERPA_ONNX_ENABLE_PYTHON)
target_link_libraries(sherpa-onnx "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../lib/python${PYTHON_VERSION}/site-packages/sherpa_onnx/lib")
target_link_libraries(sherpa-onnx-offline "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../lib/python${PYTHON_VERSION}/site-packages/sherpa_onnx/lib")
target_link_libraries(sherpa-onnx-offline-parallel "-Wl,-rpath,${SHERPA_ONNX_RPATH_ORIGIN}/../lib/python${PYTHON_VERSION}/site-packages/sherpa_onnx/lib")
endif()
endif()
... ... @@ -151,6 +158,7 @@ install(
TARGETS
sherpa-onnx
sherpa-onnx-offline
sherpa-onnx-offline-parallel
DESTINATION
bin
)
... ...
... ... @@ -78,9 +78,11 @@ class OfflineWhisperModel::Impl {
decoder_input.size(), decoder_output_names_ptr_.data(),
decoder_output_names_ptr_.size());
return {std::move(decoder_out[0]), std::move(decoder_out[1]),
std::move(decoder_out[2]), std::move(decoder_input[3]),
std::move(decoder_input[4]), std::move(decoder_input[5])};
return std::tuple<Ort::Value, Ort::Value, Ort::Value, Ort::Value,
Ort::Value, Ort::Value>{
std::move(decoder_out[0]), std::move(decoder_out[1]),
std::move(decoder_out[2]), std::move(decoder_input[3]),
std::move(decoder_input[4]), std::move(decoder_input[5])};
}
std::pair<Ort::Value, Ort::Value> GetInitialSelfKVCache() {
... ...
// sherpa-onnx/csrc/sherpa-onnx-offline-parallel.cc
//
// Copyright (c) 2022-2023 cuidc
#include <stdio.h>
#include <atomic>
#include <chrono> // NOLINT
#include <fstream>
#include <mutex> // NOLINT
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "sherpa-onnx/csrc/offline-recognizer.h"
#include "sherpa-onnx/csrc/parse-options.h"
#include "sherpa-onnx/csrc/wave-reader.h"
std::atomic<int> wav_index(0);
std::mutex mtx;
std::vector<std::vector<std::string>> SplitToBatches(
const std::vector<std::string> &input, int32_t batch_size) {
std::vector<std::vector<std::string>> outputs;
auto itr = input.cbegin();
int32_t process_num = 0;
while (process_num + batch_size <= static_cast<int32_t>(input.size())) {
auto chunk_end = itr + batch_size;
outputs.emplace_back(itr, chunk_end);
itr = chunk_end;
process_num += batch_size;
}
if (itr != input.cend()) {
outputs.emplace_back(itr, input.cend());
}
return outputs;
}
std::vector<std::string> LoadScpFile(const std::string &wav_scp_path) {
std::vector<std::string> wav_paths;
std::ifstream in(wav_scp_path);
if (!in.is_open()) {
fprintf(stderr, "Failed to open file: %s.\n", wav_scp_path.c_str());
return wav_paths;
}
std::string line, column1, column2;
while (std::getline(in, line)) {
std::istringstream iss(line);
iss >> column1 >> column2;
wav_paths.emplace_back(std::move(column2));
}
return wav_paths;
}
void AsrInference(const std::vector<std::vector<std::string>> &chunk_wav_paths,
sherpa_onnx::OfflineRecognizer* recognizer,
float* total_length, float* total_time) {
std::vector<std::unique_ptr<sherpa_onnx::OfflineStream>> ss;
std::vector<sherpa_onnx::OfflineStream *> ss_pointers;
float duration = 0.0f;
float elapsed_seconds_batch = 0.0f;
// warm up
for (const auto &wav_filename : chunk_wav_paths[0]) {
int32_t sampling_rate = -1;
bool is_ok = false;
const std::vector<float> samples =
sherpa_onnx::ReadWave(wav_filename, &sampling_rate, &is_ok);
if (!is_ok) {
fprintf(stderr, "Failed to read %s\n", wav_filename.c_str());
continue;
}
duration += samples.size() / static_cast<float>(sampling_rate);
auto s = recognizer->CreateStream();
s->AcceptWaveform(sampling_rate, samples.data(), samples.size());
ss.push_back(std::move(s));
ss_pointers.push_back(ss.back().get());
}
recognizer->DecodeStreams(ss_pointers.data(), ss_pointers.size());
ss_pointers.clear();
ss.clear();
while (true) {
int chunk = wav_index.fetch_add(1);
if (chunk >= chunk_wav_paths.size()) {
break;
}
const auto &wav_paths = chunk_wav_paths[chunk];
const auto begin = std::chrono::steady_clock::now();
for (const auto &wav_filename : wav_paths) {
int32_t sampling_rate = -1;
bool is_ok = false;
const std::vector<float> samples =
sherpa_onnx::ReadWave(wav_filename, &sampling_rate, &is_ok);
if (!is_ok) {
fprintf(stderr, "Failed to read %s\n", wav_filename.c_str());
continue;
}
duration += samples.size() / static_cast<float>(sampling_rate);
auto s = recognizer->CreateStream();
s->AcceptWaveform(sampling_rate, samples.data(), samples.size());
ss.push_back(std::move(s));
ss_pointers.push_back(ss.back().get());
}
recognizer->DecodeStreams(ss_pointers.data(), ss_pointers.size());
const auto end = std::chrono::steady_clock::now();
float elapsed_seconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin)
.count() /
1000.;
elapsed_seconds_batch += elapsed_seconds;
int i = 0;
for (const auto &wav_filename : wav_paths) {
fprintf(stderr, "%s\n%s\n----\n", wav_filename.c_str(),
ss[i]->GetResult().AsJsonString().c_str());
i = i + 1;
}
ss_pointers.clear();
ss.clear();
}
fprintf(stderr, "thread %lu.\n", std::this_thread::get_id());
{
std::lock_guard<std::mutex> guard(mtx);
*total_length += duration;
if (*total_time < elapsed_seconds_batch) {
*total_time = elapsed_seconds_batch;
}
}
}
int main(int32_t argc, char *argv[]) {
const char *kUsageMessage = R"usage(
Speech recognition using non-streaming models with sherpa-onnx.
Usage:
(1) Transducer from icefall
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
./bin/sherpa-onnx-offline-parallel \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
--batch-size=8 \
--nj=1 \
--wav-scp=wav.scp
./bin/sherpa-onnx-offline-parallel \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
--batch-size=1 \
--nj=8 \
/path/to/foo.wav [bar.wav foobar.wav ...]
(2) Paraformer from FunASR
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
./bin/sherpa-onnx-offline-parallel \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/model.onnx \
--num-threads=1 \
--decoding-method=greedy_search \
/path/to/foo.wav [bar.wav foobar.wav ...]
(3) Whisper models
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/tiny.en.html
./bin/sherpa-onnx-offline-parallel \
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
--num-threads=1 \
/path/to/foo.wav [bar.wav foobar.wav ...]
(4) NeMo CTC models
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
./bin/sherpa-onnx-offline-parallel \
--tokens=./sherpa-onnx-nemo-ctc-en-conformer-medium/tokens.txt \
--nemo-ctc-model=./sherpa-onnx-nemo-ctc-en-conformer-medium/model.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/0.wav \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/1.wav \
./sherpa-onnx-nemo-ctc-en-conformer-medium/test_wavs/8k.wav
(5) TDNN CTC model for the yesno recipe from icefall
See https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/yesno/index.html
//
./bin/sherpa-onnx-offline-parallel \
--sample-rate=8000 \
--feat-dim=23 \
--tokens=./sherpa-onnx-tdnn-yesno/tokens.txt \
--tdnn-model=./sherpa-onnx-tdnn-yesno/model-epoch-14-avg-2.onnx \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_0_1_0_0_0_1.wav \
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_0_0_0_1_0.wav
Note: It supports decoding multiple files in batches
foo.wav should be of single channel, 16-bit PCM encoded wave file; its
sampling rate can be arbitrary and does not need to be 16kHz.
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
for a list of pre-trained models to download.
)usage";
std::string wav_scp = ""; // file path, kaldi style wav list.
int32_t nj = 1; // thread number
int32_t batch_size = 1; // number of wav files processed at once.
sherpa_onnx::ParseOptions po(kUsageMessage);
sherpa_onnx::OfflineRecognizerConfig config;
config.Register(&po);
po.Register("wav-scp", &wav_scp,
"a file including wav-id and wav-path, kaldi style wav list."
"default="". when it is not empty, wav files which positional "
"parameters provide are invalid.");
po.Register("nj", &nj,
"multi-thread num for decoding, default=1");
po.Register("batch-size", &batch_size,
"number of wav files processed at once during the decoding"
"process. default=1");
po.Read(argc, argv);
if (po.NumArgs() < 1 && wav_scp.empty()) {
fprintf(stderr, "Error: Please provide at least 1 wave file.\n\n");
po.PrintUsage();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s\n", config.ToString().c_str());
if (!config.Validate()) {
fprintf(stderr, "Errors in config!\n");
return -1;
}
std::this_thread::sleep_for(std::chrono::seconds(10)); // sleep 10s
fprintf(stderr, "Creating recognizer ...\n");
const auto begin = std::chrono::steady_clock::now();
sherpa_onnx::OfflineRecognizer recognizer(config);
const auto end = std::chrono::steady_clock::now();
float elapsed_seconds =
std::chrono::duration_cast<std::chrono::milliseconds>(end - begin)
.count() /
1000.;
fprintf(stderr,
"Started nj: %d, batch_size: %d, wav_path: %s. recognizer init time: "
"%.6f\n", nj, batch_size, wav_scp.c_str(), elapsed_seconds);
std::this_thread::sleep_for(std::chrono::seconds(10)); // sleep 10s
std::vector<std::string> wav_paths;
if (!wav_scp.empty()) {
wav_paths = LoadScpFile(wav_scp);
} else {
for (int32_t i = 1; i <= po.NumArgs(); ++i) {
wav_paths.emplace_back(po.GetArg(i));
}
}
if (wav_paths.empty()) {
fprintf(stderr, "wav files is empty.\n");
return -1;
}
std::vector<std::thread> threads;
std::vector<std::vector<std::string>> batch_wav_paths =
SplitToBatches(wav_paths, batch_size);
float total_length = 0.0f;
float total_time = 0.0f;
for (int i = 0; i < nj; i++) {
threads.emplace_back(std::thread(AsrInference, batch_wav_paths,
&recognizer, &total_length, &total_time));
}
for (auto& thread : threads) {
thread.join();
}
fprintf(stderr, "num threads: %d\n", config.model_config.num_threads);
fprintf(stderr, "decoding method: %s\n", config.decoding_method.c_str());
if (config.decoding_method == "modified_beam_search") {
fprintf(stderr, "max active paths: %d\n", config.max_active_paths);
}
fprintf(stderr, "Elapsed seconds: %.3f s\n", total_time);
float rtf = total_time / total_length;
fprintf(stderr, "Real time factor (RTF): %.6f / %.6f = %.4f\n",
total_time, total_length, rtf);
fprintf(stderr, "SPEEDUP: %.4f\n", 1.0 / rtf);
return 0;
}
... ...