Fangjun Kuang
Committed by GitHub

Export Pyannote speaker segmentation models to onnx (#1382)

name: export-pyannote-segmentation-to-onnx
on:
workflow_dispatch:
concurrency:
group: export-pyannote-segmentation-to-onnx-${{ github.ref }}
cancel-in-progress: true
jobs:
export-pyannote-segmentation-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: export Pyannote segmentation models to ONNX
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [macos-latest]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install pyannote
shell: bash
run: |
pip install pyannote.audio onnx onnxruntime
- name: Run
shell: bash
run: |
d=sherpa-onnx-pyannote-segmentation-3-0
src=$PWD/$d
mkdir -p $src
pushd scripts/pyannote/segmentation
./run.sh
cp ./*.onnx $src/
cp ./README.md $src/
cp ./LICENSE $src/
cp ./run.sh $src/
cp ./*.py $src/
popd
ls -lh $d
tar cjfv $d.tar.bz2 $d
- name: Release
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.tar.bz2
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: speaker-segmentation-models
- name: Publish to huggingface
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
with:
max_attempts: 20
timeout_seconds: 200
shell: bash
command: |
git config --global user.email "csukuangfj@gmail.com"
git config --global user.name "Fangjun Kuang"
d=sherpa-onnx-pyannote-segmentation-3-0
export GIT_LFS_SKIP_SMUDGE=1
export GIT_CLONE_PROTECTION_ACTIVE=false
git clone https://huggingface.co/csukuangfj/$d huggingface
cp -v $d/* ./huggingface
cd huggingface
git lfs track "*.onnx"
git status
git add .
git status
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/$d main
... ...
#!/usr/bin/env python3
from typing import Any, Dict
import onnx
import torch
from onnxruntime.quantization import QuantType, quantize_dynamic
from pyannote.audio import Model
from pyannote.audio.core.task import Problem, Resolution
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
@torch.no_grad()
def main():
# You can download ./pytorch_model.bin from
# https://hf-mirror.com/csukuangfj/pyannote-models/tree/main/segmentation-3.0
pt_filename = "./pytorch_model.bin"
model = Model.from_pretrained(pt_filename)
model.eval()
assert model.dimension == 7, model.dimension
print(model.specifications)
assert (
model.specifications.problem == Problem.MONO_LABEL_CLASSIFICATION
), model.specifications.problem
assert (
model.specifications.resolution == Resolution.FRAME
), model.specifications.resolution
assert model.specifications.duration == 10.0, model.specifications.duration
assert model.audio.sample_rate == 16000, model.audio.sample_rate
# (batch, num_channels, num_samples)
assert list(model.example_input_array.shape) == [
1,
1,
16000 * 10,
], model.example_input_array.shape
example_output = model(model.example_input_array)
# (batch, num_frames, num_classes)
assert list(example_output.shape) == [1, 589, 7], example_output.shape
assert model.receptive_field.step == 0.016875, model.receptive_field.step
assert model.receptive_field.duration == 0.0619375, model.receptive_field.duration
assert model.receptive_field.step * 16000 == 270, model.receptive_field.step * 16000
assert model.receptive_field.duration * 16000 == 991, (
model.receptive_field.duration * 16000
)
opset_version = 18
filename = "model.onnx"
torch.onnx.export(
model,
model.example_input_array,
filename,
opset_version=opset_version,
input_names=["x"],
output_names=["y"],
dynamic_axes={
"x": {0: "N", 2: "T"},
"y": {0: "N", 1: "T"},
},
)
sample_rate = model.audio.sample_rate
window_size = int(model.specifications.duration) * 16000
receptive_field_size = int(model.receptive_field.duration * 16000)
receptive_field_shift = int(model.receptive_field.step * 16000)
meta_data = {
"num_speakers": len(model.specifications.classes),
"powerset_max_classes": model.specifications.powerset_max_classes,
"num_classes": model.dimension,
"sample_rate": sample_rate,
"window_size": window_size,
"receptive_field_size": receptive_field_size,
"receptive_field_shift": receptive_field_shift,
"model_type": "pyannote-segmentation-3.0",
"version": "1",
"model_author": "pyannote",
"maintainer": "k2-fsa",
"url_1": "https://huggingface.co/pyannote/segmentation-3.0",
"url_2": "https://huggingface.co/csukuangfj/pyannote-models/tree/main/segmentation-3.0",
"license": "https://huggingface.co/pyannote/segmentation-3.0/blob/main/LICENSE",
}
add_meta_data(filename=filename, meta_data=meta_data)
print("Generate int8 quantization models")
filename_int8 = "model.int8.onnx"
quantize_dynamic(
model_input=filename,
model_output=filename_int8,
weight_type=QuantType.QUInt8,
)
print(f"Saved to {filename} and {filename_int8}")
if __name__ == "__main__":
main()
... ...
# config.yaml
```yaml
task:
_target_: pyannote.audio.tasks.SpeakerDiarization
duration: 10.0
max_speakers_per_chunk: 3
max_speakers_per_frame: 2
model:
_target_: pyannote.audio.models.segmentation.PyanNet
sample_rate: 16000
num_channels: 1
sincnet:
stride: 10
lstm:
hidden_size: 128
num_layers: 4
bidirectional: true
monolithic: true
linear:
hidden_size: 128
num_layers: 2
```
# Model architecture of ./pytorch_model.bin
`print(model)`:
```python3
PyanNet(
(sincnet): SincNet(
(wav_norm1d): InstanceNorm1d(1, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv1d): ModuleList(
(0): Encoder(
(filterbank): ParamSincFB()
)
(1): Conv1d(80, 60, kernel_size=(5,), stride=(1,))
(2): Conv1d(60, 60, kernel_size=(5,), stride=(1,))
)
(pool1d): ModuleList(
(0-2): 3 x MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
)
(norm1d): ModuleList(
(0): InstanceNorm1d(80, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(1-2): 2 x InstanceNorm1d(60, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
)
)
(lstm): LSTM(60, 128, num_layers=4, batch_first=True, dropout=0.5, bidirectional=True)
(linear): ModuleList(
(0): Linear(in_features=256, out_features=128, bias=True)
(1): Linear(in_features=128, out_features=128, bias=True)
)
(classifier): Linear(in_features=128, out_features=7, bias=True)
(activation): LogSoftmax(dim=-1)
)
```
```python3
>>> list(model.specifications)
[Specifications(problem=<Problem.MONO_LABEL_CLASSIFICATION: 1>, resolution=<Resolution.FRAME: 1>, duration=10.0, min_duration=None, warm_up=(0.0, 0.0), classes=['speaker#1', 'speaker#2', 'speaker#3'], powerset_max_classes=2, permutation_invariant=True)]
```
```python3
>>> model.hparams
"linear": {'hidden_size': 128, 'num_layers': 2}
"lstm": {'hidden_size': 128, 'num_layers': 4, 'bidirectional': True, 'monolithic': True, 'dropout': 0.5, 'batch_first': True}
"num_channels": 1
"sample_rate": 16000
"sincnet": {'stride': 10, 'sample_rate': 16000}
```
## Papers
- [pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe](https://hal.science/hal-04247212/document)
- [pyannote.audio speaker diarization pipeline at VoxSRC 2023](https://mmai.io/datasets/voxceleb/voxsrc/data_workshop_2023/reports/pyannote_report.pdf)
... ...
#!/usr/bin/env bash
python3 -m onnxruntime.quantization.preprocess --input model.onnx --output tmp.preprocessed.onnx
mv ./tmp.preprocessed.onnx ./model.onnx
./show-onnx.py --filename ./model.onnx
<<EOF
=========./model.onnx==========
NodeArg(name='x', type='tensor(float)', shape=[1, 1, 'T'])
-----
NodeArg(name='y', type='tensor(float)', shape=[1, 'floor(floor(floor(floor(T/10 - 251/10)/3 - 2/3)/3)/3 - 8/3) + 1', 7])
floor(floor(floor(floor(T/10 - 251/10)/3 - 2/3)/3)/3 - 8/3) + 1
= floor(floor(floor(floor(T - 251)/30 - 2/3)/3)/3 - 8/3) + 1
= floor(floor(floor(floor(T - 271)/30)/3)/3 - 8/3) + 1
= floor(floor(floor(floor(T - 271)/90))/3 - 8/3) + 1
= floor(floor(floor(T - 271)/90)/3 - 8/3) + 1
= floor(floor((T - 271)/90)/3 - 8/3) + 1
= floor(floor((T - 271)/90 - 8)/3) + 1
= floor(floor((T - 271 - 720)/90)/3) + 1
= floor(floor((T - 991)/90)/3) + 1
= floor(floor((T - 991)/270)) + 1
= (T - 991)/270 + 1
= (T - 991 + 270)/270
= (T - 721)/270
It means:
- Number of input samples should be at least 721
- One frame corresponds to 270 samples. (If we use T + 270, it outputs one more frame)
EOF
... ...
#!/usr/bin/env bash
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
set -ex
function install_pyannote() {
pip install pyannote.audio onnx onnxruntime
}
function download_test_files() {
curl -SL -O https://huggingface.co/csukuangfj/pyannote-models/resolve/main/segmentation-3.0/pytorch_model.bin
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/lei-jun-test.wav
}
install_pyannote
download_test_files
./export-onnx.py
./preprocess.sh
echo "----------torch----------"
./vad-torch.py
echo "----------onnx model.onnx----------"
./vad-onnx.py --model ./model.onnx --wav ./lei-jun-test.wav
echo "----------onnx model.int8.onnx----------"
./vad-onnx.py --model ./model.int8.onnx --wav ./lei-jun-test.wav
cat >README.md << EOF
# Introduction
Models in this file are converted from
https://huggingface.co/pyannote/segmentation-3.0/tree/main
EOF
cat >LICENSE <<EOF
MIT License
Copyright (c) 2022 CNRS
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
EOF
... ...
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import onnxruntime
import argparse
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--filename",
type=str,
required=True,
help="Path to model.onnx",
)
return parser.parse_args()
def show(filename):
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
sess = onnxruntime.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)
print("-----")
for i in sess.get_outputs():
print(i)
def main():
args = get_args()
print(f"========={args.filename}==========")
show(args.filename)
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env python3
"""
./export-onnx.py
./preprocess.sh
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/lei-jun-test.wav
./vad-onnx.py --model ./model.onnx --wav ./lei-jun-test.wav
"""
import argparse
from pathlib import Path
import librosa
import numpy as np
import onnxruntime as ort
import soundfile as sf
from numpy.lib.stride_tricks import as_strided
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="Path to model.onnx")
parser.add_argument("--wav", type=str, required=True, help="Path to test.wav")
return parser.parse_args()
class OnnxModel:
def __init__(self, filename):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.model.get_modelmeta().custom_metadata_map
print(meta)
self.window_size = int(meta["window_size"])
self.sample_rate = int(meta["sample_rate"])
self.window_shift = int(0.1 * self.window_size)
self.receptive_field_size = int(meta["receptive_field_size"])
self.receptive_field_shift = int(meta["receptive_field_shift"])
self.num_speakers = int(meta["num_speakers"])
self.powerset_max_classes = int(meta["powerset_max_classes"])
self.num_classes = int(meta["num_classes"])
def __call__(self, x):
"""
Args:
x: (N, num_samples)
Returns:
A tensor of shape (N, num_frames, num_classes)
"""
x = np.expand_dims(x, axis=1)
(y,) = self.model.run(
[self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: x}
)
return y
def load_wav(filename, expected_sample_rate) -> np.ndarray:
audio, sample_rate = sf.read(filename, dtype="float32", always_2d=True)
audio = audio[:, 0] # only use the first channel
if sample_rate != expected_sample_rate:
audio = librosa.resample(
audio,
orig_sr=sample_rate,
target_sr=expected_sample_rate,
)
return audio
def get_powerset_mapping(num_classes, num_speakers, powerset_max_classes):
mapping = np.zeros((num_classes, num_speakers))
k = 1
for i in range(1, powerset_max_classes + 1):
if i == 1:
for j in range(0, num_speakers):
mapping[k, j] = 1
k += 1
elif i == 2:
for j in range(0, num_speakers):
for m in range(j + 1, num_speakers):
mapping[k, j] = 1
mapping[k, m] = 1
k += 1
elif i == 3:
raise RuntimeError("Unsupported")
return mapping
def to_multi_label(y, mapping):
"""
Args:
y: (num_chunks, num_frames, num_classes)
Returns:
A tensor of shape (num_chunks, num_frames, num_speakers)
"""
y = np.argmax(y, axis=-1)
labels = mapping[y.reshape(-1)].reshape(y.shape[0], y.shape[1], -1)
return labels
def main():
args = get_args()
assert Path(args.model).is_file(), args.model
assert Path(args.wav).is_file(), args.wav
m = OnnxModel(args.model)
audio = load_wav(args.wav, m.sample_rate)
# audio: (num_samples,)
print("audio", audio.shape, audio.min(), audio.max(), audio.sum())
num = (audio.shape[0] - m.window_size) // m.window_shift + 1
samples = as_strided(
audio,
shape=(num, m.window_size),
strides=(m.window_shift * audio.strides[0], audio.strides[0]),
)
# or use torch.Tensor.unfold
# samples = torch.from_numpy(audio).unfold(0, m.window_size, m.window_shift).numpy()
print(
"samples",
samples.shape,
samples.mean(),
samples.sum(),
samples[:3, :3].sum(axis=-1),
)
if (
audio.shape[0] < m.window_size
or (audio.shape[0] - m.window_size) % m.window_shift > 0
):
has_last_chunk = True
else:
has_last_chunk = False
num_chunks = samples.shape[0]
batch_size = 32
output = []
for i in range(0, num_chunks, batch_size):
start = i
end = i + batch_size
# it's perfectly ok to use end > num_chunks
y = m(samples[start:end])
output.append(y)
if has_last_chunk:
last_chunk = audio[num_chunks * m.window_shift :] # noqa
pad_size = m.window_size - last_chunk.shape[0]
last_chunk = np.pad(last_chunk, (0, pad_size))
last_chunk = np.expand_dims(last_chunk, axis=0)
y = m(last_chunk)
output.append(y)
y = np.vstack(output)
# y: (num_chunks, num_frames, num_classes)
mapping = get_powerset_mapping(
num_classes=m.num_classes,
num_speakers=m.num_speakers,
powerset_max_classes=m.powerset_max_classes,
)
labels = to_multi_label(y, mapping=mapping)
# labels: (num_chunks, num_frames, num_speakers)
# binary classification
labels = np.max(labels, axis=-1)
# labels: (num_chunk, num_frames)
num_frames = (
int(
(m.window_size + (labels.shape[0] - 1) * m.window_shift)
/ m.receptive_field_shift
)
+ 1
)
count = np.zeros((num_frames,))
classification = np.zeros((num_frames,))
weight = np.hamming(labels.shape[1])
for i in range(labels.shape[0]):
this_chunk = labels[i]
start = int(i * m.window_shift / m.receptive_field_shift + 0.5)
end = start + this_chunk.shape[0]
classification[start:end] += this_chunk * weight
count[start:end] += weight
classification /= np.maximum(count, 1e-12)
if has_last_chunk:
stop_frame = int(audio.shape[0] / m.receptive_field_shift)
classification = classification[:stop_frame]
classification = classification.tolist()
onset = 0.5
offset = 0.5
is_active = classification[0] > onset
start = None
scale = m.receptive_field_shift / m.sample_rate
scale_offset = m.receptive_field_size / m.sample_rate * 0.5
for i in range(len(classification)):
if is_active:
if classification[i] < offset:
print(
f"{start*scale + scale_offset:.3f} -- {i*scale + scale_offset:.3f}"
)
is_active = False
else:
if classification[i] > onset:
start = i
is_active = True
if is_active:
print(
f"{start*scale + scale_offset:.3f} -- {(len(classification)-1)*scale + scale_offset:.3f}"
)
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env python3
import torch
from pyannote.audio import Model
from pyannote.audio.pipelines import (
VoiceActivityDetection as VoiceActivityDetectionPipeline,
)
@torch.no_grad()
def main():
# Please download it from
# https://huggingface.co/csukuangfj/pyannote-models/tree/main/segmentation-3.0
pt_filename = "./pytorch_model.bin"
model = Model.from_pretrained(pt_filename)
model.eval()
pipeline = VoiceActivityDetectionPipeline(segmentation=model)
# https://huggingface.co/pyannote/voice-activity-detection/blob/main/config.yaml
# https://github.com/pyannote/pyannote-audio/issues/1215
initial_params = {
"min_duration_on": 0.0,
"min_duration_off": 0.0,
}
pipeline.onset = 0.5
pipeline.offset = 0.5
pipeline.instantiate(initial_params)
# wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/lei-jun-test.wav
t = pipeline("./lei-jun-test.wav")
print(type(t))
print(t)
if __name__ == "__main__":
main()
... ...