Fangjun Kuang
Committed by GitHub

Pascal API for non-streaming ASR (#1247)

... ... @@ -115,9 +115,11 @@ jobs:
if [[ ${{ matrix.os }} == 'windows-latest' ]]; then
cp -v install/lib/*.dll ../pascal-api-examples/read-wav
cp -v install/lib/*.dll ../pascal-api-examples/streaming-asr
cp -v install/lib/*.dll ../pascal-api-examples/non-streaming-asr
cp -v ../sherpa-onnx/pascal-api/sherpa_onnx.pas ../pascal-api-examples/read-wav
cp -v ../sherpa-onnx/pascal-api/sherpa_onnx.pas ../pascal-api-examples/streaming-asr
cp -v ../sherpa-onnx/pascal-api/sherpa_onnx.pas ../pascal-api-examples/non-streaming-asr
fi
- name: Run Pascal test (Read wav test)
... ... @@ -133,6 +135,48 @@ jobs:
ls -lh
popd
- name: Run Pascal test (Non Streaming ASR)
shell: bash
run: |
export PATH=/c/lazarus/fpc/3.2.2/bin/x86_64-win64:$PATH
cd ./pascal-api-examples
pushd non-streaming-asr
./run-zipformer-transducer.sh
rm -rf sherpa-onnx-*
echo "---"
./run-whisper.sh
rm -rf sherpa-onnx-*
echo "---"
./run-nemo-transducer.sh
rm -rf sherpa-onnx-*
echo "---"
./run-nemo-ctc.sh
rm -rf sherpa-onnx-*
echo "---"
./run-sense-voice.sh
rm -rf sherpa-onnx-*
echo "---"
./run-telespeech-ctc.sh
rm -rf sherpa-onnx-*
echo "---"
./run-paraformer.sh
./run-paraformer-itn.sh
rm -rf sherpa-onnx-*
echo "---"
ls -lh
popd
- name: Run Pascal test (Streaming ASR)
shell: bash
run: |
... ... @@ -141,10 +185,15 @@ jobs:
cd ./pascal-api-examples
pushd streaming-asr
./run-zipformer-transducer.sh
rm -rf sherpa-onnx-*
echo "---"
./run-nemo-transducer.sh
rm -rf sherpa-onnx-*
echo "---"
if [[ ${{ matrix.os }} != 'windows-latest' ]]; then
./run-paraformer.sh
rm -rf sherpa-onnx-*
... ...
... ... @@ -25,13 +25,17 @@
### Supported programming languages
| 1. C++ | 2. C | 3. Python | 4. C# | 5. Java | 6. JavaScript |
|--------|-------|-----------|-------|---------|---------------|
| ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| 1. C++ | 2. C | 3. Python | 4. C# | 5. Java |
|--------|-------|-----------|-------|---------|
| ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| 7. Kotlin | 8. Swift | 9. Go | 10. Dart | 11. Rust | 12. Pascal |
|-----------|----------|-------|----------|----------|------------|
| ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| 6. JavaScript | 7. Kotlin | 8. Swift | 9. Go | 10. Dart |
|---------------|-----------|----------|-------|----------|
| ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
| 11. Rust | 12. Pascal |
|----------|------------|
| ✔️ | ✔️ |
For Rust support, please see https://github.com/thewh1teagle/sherpa-rs
... ...
... ... @@ -7,3 +7,4 @@ APIs of [sherpa-onnx](https://github.com/k2-fsa/sherpa-onnx).
|---------|------------|
|[read-wav](./read-wav)|It shows how to read a wave file.|
|[streaming-asr](./streaming-asr)| It shows how to use streaming models for speech recognition.|
|[non-streaming-asr](./non-streaming-asr)| It shows how to use non-streaming models for speech recognition.|
... ...
!run-*.sh
zipformer_transducer
whisper
nemo_transducer
nemo_ctc
paraformer
paraformer_itn
sense_voice
telespeech_ctc
... ...
# Introduction
This folder contains examples about using sherpa-onnx's object pascal
APIs with non-streaming models for speech recognition.
|File|Description|
|----|-----------|
|[run-nemo-ctc.sh](./run-nemo-ctc.sh)|Use a non-streaming NeMo CTC model for speech recognition|
|[run-nemo-transducer.sh](./run-nemo-transducer.sh)|Use a non-streaming NeMo transducer model for speech recognition|
|[run-paraformer-itn.sh](./run-paraformer-itn.sh)|Use a non-streaming Paraformer model for speech recognition with inverse text normalization for numbers|
|[run-paraformer.sh](./run-paraformer.sh)|Use a non-streaming Paraformer model for speech recognition|
|[run-sense-voice.sh](./run-sense-voice.sh)|Use a non-streaming SenseVoice model for speech recognition|
|[run-telespeech-ctc.sh](./run-telespeech-ctc.sh)|Use a non-streaming TeleSpeech CTC model for speech recognition|
|[run-whisper.sh](./run-whisper.sh)|Use a Whisper model for speech recognition|
|[run-zipformer-transducer.sh](./run-zipformer-transducer.sh)|Use a non-streaming Zipformer transducer model for speech recognition|
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming NeMo CTC model
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program nemo_ctc;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.NeMoCtC.Model := './sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/model.onnx';
Config.ModelConfig.Tokens := './sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/test_wavs/es-spanish.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming NeMo transducer
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program nemo_transducer;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.Transducer.Encoder := './sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k/encoder.onnx';
Config.ModelConfig.Transducer.Decoder := './sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k/decoder.onnx';
Config.ModelConfig.Transducer.Joiner := './sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k/joiner.onnx';
Config.ModelConfig.ModelType := 'nemo_transducer';
Config.ModelConfig.Tokens := './sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k/test_wavs/de-german.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming Paraformer model
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program paraformer;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.Paraformer.Model := './sherpa-onnx-paraformer-zh-2023-09-14/model.int8.onnx';
Config.ModelConfig.Tokens := './sherpa-onnx-paraformer-zh-2023-09-14/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-paraformer-zh-2023-09-14/test_wavs/3-sichuan.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming Paraformer model
to decode files with inverse text normalization for numbers.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program paraformer_itn;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.Paraformer.Model := './sherpa-onnx-paraformer-zh-2023-09-14/model.int8.onnx';
Config.ModelConfig.Tokens := './sherpa-onnx-paraformer-zh-2023-09-14/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
Config.RuleFsts := './itn_zh_number.fst';
WaveFilename := './itn-zh-number.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
tar xvf sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
rm sherpa-onnx-nemo-fast-conformer-ctc-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./nemo_ctc.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./nemo_ctc
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
tar xvf sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
rm sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./nemo_transducer.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./nemo_transducer
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-paraformer-zh-2023-09-14/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
tar xvf sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
rm sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
fi
if [ ! -f ./itn-zh-number.wav ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn-zh-number.wav
fi
if [ ! -f ./itn_zh_number.fst ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/itn_zh_number.fst
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./paraformer_itn.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./paraformer_itn
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-paraformer-zh-2023-09-14/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
tar xvf sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
rm sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./paraformer.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./paraformer
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./sense_voice.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./sense_voice
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04.tar.bz2
tar xvf sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04.tar.bz2
rm sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./telespeech_ctc.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./telespeech_ctc
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.en.tar.bz2
rm sherpa-onnx-whisper-tiny.en.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./whisper.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./whisper
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-zipformer-gigaspeech-2023-12-12/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-gigaspeech-2023-12-12.tar.bz2
tar xvf sherpa-onnx-zipformer-gigaspeech-2023-12-12.tar.bz2
rm sherpa-onnx-zipformer-gigaspeech-2023-12-12.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./zipformer_transducer.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./zipformer_transducer
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming SenseVoice model
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program sense_voice;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.SenseVoice.Model := './sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx';
Config.ModelConfig.SenseVoice.Language := 'auto';
Config.ModelConfig.SenseVoice.UseItn := False;
Config.ModelConfig.Tokens := './sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming TeleSpeech CTC model
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program telespeech_ctc;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.TeleSpeechCtc := './sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04/model.int8.onnx';
Config.ModelConfig.Tokens := './sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04/test_wavs/3-sichuan.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming Whisper model
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program whisper;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.Whisper.Encoder := './sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx';
Config.ModelConfig.Whisper.Decoder := './sherpa-onnx-whisper-tiny.en/tiny.en-decoder.int8.onnx';
Config.ModelConfig.Tokens := './sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-whisper-tiny.en/test_wavs/0.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a non-streaming Zipformer transducer
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program zipformer_transducer;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
Config: TSherpaOnnxOfflineRecognizerConfig;
Recognizer: TSherpaOnnxOfflineRecognizer;
Stream: TSherpaOnnxOfflineStream;
RecognitionResult: TSherpaOnnxOfflineRecognizerResult;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Config.ModelConfig.Transducer.Encoder := './sherpa-onnx-zipformer-gigaspeech-2023-12-12/encoder-epoch-30-avg-1.int8.onnx';
Config.ModelConfig.Transducer.Decoder := './sherpa-onnx-zipformer-gigaspeech-2023-12-12/decoder-epoch-30-avg-1.onnx';
Config.ModelConfig.Transducer.Joiner := './sherpa-onnx-zipformer-gigaspeech-2023-12-12/joiner-epoch-30-avg-1.onnx';
Config.ModelConfig.Tokens := './sherpa-onnx-zipformer-gigaspeech-2023-12-12/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-zipformer-gigaspeech-2023-12-12/test_wavs/1089-134686-0001.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOfflineRecognizer.Create(Config);
Stream := Recognizer.CreateStream();
Start := Now;
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
!run-*.sh
zipformer_transducer
paraformer
zipformer_ctc
zipformer_ctc_hlg
nemo_transducer
... ...
... ... @@ -9,3 +9,4 @@ APIs with streaming models for speech recognition.
|[run-zipformer-ctc-hlg.sh](./run-zipformer-ctc-hlg.sh)|Use a streaming Zipformer CTC model for speech recognition|
|[run-zipformer-ctc.sh](./run-zipformer-ctc.sh)|Use a streaming Zipformer CTC model with HLG for speech recognition|
|[run-zipformer-transducer.sh](./run-zipformer-transducer.sh)|Use a Zipformer transducer model for speech recognition|
|[run-nemo-transducer.sh](./run-nemo-transducer.sh)|Use a NeMo transducer model for speech recognition|
... ...
{ Copyright (c) 2024 Xiaomi Corporation }
{
This file shows how to use a streaming NeMo transducer
to decode files.
You can download the model files from
https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
}
program nemo_transducer;
{$mode objfpc}
uses
sherpa_onnx,
DateUtils,
SysUtils;
var
Config: TSherpaOnnxOnlineRecognizerConfig;
Recognizer: TSherpaOnnxOnlineRecognizer;
Stream: TSherpaOnnxOnlineStream;
RecognitionResult: TSherpaOnnxOnlineRecognizerResult;
Wave: TSherpaOnnxWave;
WaveFilename: AnsiString;
TailPaddings: array of Single;
Start: TDateTime;
Stop: TDateTime;
Elapsed: Single;
Duration: Single;
RealTimeFactor: Single;
begin
Initialize(Config);
{Please visit https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
to download model files used in this file.}
Config.ModelConfig.Transducer.Encoder := './sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms/encoder.onnx';
Config.ModelConfig.Transducer.Decoder := './sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms/decoder.onnx';
Config.ModelConfig.Transducer.Joiner := './sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms/joiner.onnx';
Config.ModelConfig.Tokens := './sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms/tokens.txt';
Config.ModelConfig.Provider := 'cpu';
Config.ModelConfig.NumThreads := 1;
Config.ModelConfig.Debug := False;
WaveFilename := './sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms/test_wavs/0.wav';
Wave := SherpaOnnxReadWave(WaveFilename);
Recognizer := TSherpaOnnxOnlineRecognizer.Create(Config);
Start := Now;
Stream := Recognizer.CreateStream();
Stream.AcceptWaveform(Wave.Samples, Wave.SampleRate);
SetLength(TailPaddings, Round(Wave.SampleRate * 0.5)); {0.5 seconds of padding}
Stream.AcceptWaveform(TailPaddings, Wave.SampleRate);
Stream.InputFinished();
while Recognizer.IsReady(Stream) do
Recognizer.Decode(Stream);
RecognitionResult := Recognizer.GetResult(Stream);
Stop := Now;
Elapsed := MilliSecondsBetween(Stop, Start) / 1000;
Duration := Length(Wave.Samples) / Wave.SampleRate;
RealTimeFactor := Elapsed / Duration;
WriteLn(RecognitionResult.ToString);
WriteLn(Format('NumThreads %d', [Config.ModelConfig.NumThreads]));
WriteLn(Format('Elapsed %.3f s', [Elapsed]));
WriteLn(Format('Wave duration %.3f s', [Duration]));
WriteLn(Format('RTF = %.3f/%.3f = %.3f', [Elapsed, Duration, RealTimeFactor]));
{Free resources to avoid memory leak.
Note: You don't need to invoke them for this simple script.
However, you have to invoke them in your own large/complex project.
}
FreeAndNil(Stream);
FreeAndNil(Recognizer);
end.
... ...
#!/usr/bin/env bash
set -ex
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
SHERPA_ONNX_DIR=$(cd $SCRIPT_DIR/../.. && pwd)
echo "SHERPA_ONNX_DIR: $SHERPA_ONNX_DIR"
if [[ ! -f ../../build/install/lib/libsherpa-onnx-c-api.dylib && ! -f ../../build/install/lib/libsherpa-onnx-c-api.so && ! -f ../../build/install/lib/sherpa-onnx-c-api.dll ]]; then
mkdir -p ../../build
pushd ../../build
cmake \
-DCMAKE_INSTALL_PREFIX=./install \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
..
cmake --build . --target install --config Release
ls -lh lib
popd
fi
if [ ! -f ./sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms.tar.bz2
tar xvf sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms.tar.bz2
rm sherpa-onnx-nemo-streaming-fast-conformer-transducer-en-80ms.tar.bz2
fi
fpc \
-Fu$SHERPA_ONNX_DIR/sherpa-onnx/pascal-api \
-Fl$SHERPA_ONNX_DIR/build/install/lib \
./nemo_transducer.pas
export LD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$LD_LIBRARY_PATH
export DYLD_LIBRARY_PATH=$SHERPA_ONNX_DIR/build/install/lib:$DYLD_LIBRARY_PATH
./nemo_transducer
... ...
... ... @@ -110,6 +110,109 @@ type
function GetResult(Stream: TSherpaOnnxOnlineStream): TSherpaOnnxOnlineRecognizerResult;
end;
TSherpaOnnxOfflineTransducerModelConfig = record
Encoder: AnsiString;
Decoder: AnsiString;
Joiner: AnsiString;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineParaformerModelConfig = record
Model: AnsiString;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineNemoEncDecCtcModelConfig = record
Model: AnsiString;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineWhisperModelConfig = record
Encoder: AnsiString;
Decoder: AnsiString;
Language: AnsiString;
Task: AnsiString;
TailPaddings: Integer;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineTdnnModelConfig = record
Model: AnsiString;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineLMConfig = record
Model: AnsiString;
Scale: Single;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineSenseVoiceModelConfig = record
Model: AnsiString;
Language: AnsiString;
UseItn: Boolean;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineModelConfig = record
Transducer: TSherpaOnnxOfflineTransducerModelConfig;
Paraformer: TSherpaOnnxOfflineParaformerModelConfig;
NeMoCtc: TSherpaOnnxOfflineNemoEncDecCtcModelConfig;
Whisper: TSherpaOnnxOfflineWhisperModelConfig;
Tdnn: TSherpaOnnxOfflineTdnnModelConfig;
Tokens: AnsiString;
NumThreads: Integer;
Debug: Boolean;
Provider: AnsiString;
ModelType: AnsiString;
ModelingUnit: AnsiString;
BpeVocab: AnsiString;
TeleSpeechCtc: AnsiString;
SenseVoice: TSherpaOnnxOfflineSenseVoiceModelConfig;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineRecognizerConfig = record
FeatConfig: TSherpaOnnxFeatureConfig;
ModelConfig: TSherpaOnnxOfflineModelConfig;
LMConfig: TSherpaOnnxOfflineLMConfig;
DecodingMethod: AnsiString;
MaxActivePaths: Integer;
HotwordsFile: AnsiString;
HotwordsScore: Single;
RuleFsts: AnsiString;
RuleFars: AnsiString;
BlankPenalty: Single;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineRecognizerResult = record
Text: AnsiString;
Tokens: array of AnsiString;
Timestamps: array of Single;
function ToString: AnsiString;
end;
TSherpaOnnxOfflineStream = class
private
Handle: Pointer;
public
constructor Create(P: Pointer);
destructor Destroy; override;
procedure AcceptWaveform(Samples: array of Single; SampleRate: Integer);
end;
TSherpaOnnxOfflineRecognizer = class
private
Handle: Pointer;
public
constructor Create(Config: TSherpaOnnxOfflineRecognizerConfig);
destructor Destroy; override;
function CreateStream: TSherpaOnnxOfflineStream;
procedure Decode(Stream: TSherpaOnnxOfflineStream);
function GetResult(Stream: TSherpaOnnxOfflineStream): TSherpaOnnxOfflineRecognizerResult;
end;
{ It supports reading a single channel wave with 16-bit encoded samples.
Samples are normalized to the range [-1, 1].
}
... ... @@ -204,6 +307,68 @@ type
PSherpaOnnxOnlineRecognizerConfig = ^SherpaOnnxOnlineRecognizerConfig;
SherpaOnnxOfflineTransducerModelConfig = record
Encoder: PAnsiChar;
Decoder: PAnsiChar;
Joiner: PAnsiChar;
end;
SherpaOnnxOfflineParaformerModelConfig = record
Model: PAnsiChar;
end;
SherpaOnnxOfflineNemoEncDecCtcModelConfig = record
Model: PAnsiChar;
end;
SherpaOnnxOfflineWhisperModelConfig = record
Encoder: PAnsiChar;
Decoder: PAnsiChar;
Language: PAnsiChar;
Task: PAnsiChar;
TailPaddings: cint32;
end;
SherpaOnnxOfflineTdnnModelConfig = record
Model: PAnsiChar;
end;
SherpaOnnxOfflineLMConfig = record
Model: PAnsiChar;
Scale: Single;
end;
SherpaOnnxOfflineSenseVoiceModelConfig = record
Model: PAnsiChar;
Language: PAnsiChar;
UseItn: cint32;
end;
SherpaOnnxOfflineModelConfig = record
Transducer: SherpaOnnxOfflineTransducerModelConfig;
Paraformer: SherpaOnnxOfflineParaformerModelConfig;
NeMoCtc: SherpaOnnxOfflineNemoEncDecCtcModelConfig;
Whisper: SherpaOnnxOfflineWhisperModelConfig;
Tdnn: SherpaOnnxOfflineTdnnModelConfig;
Tokens: PAnsiChar;
NumThreads: cint32;
Debug: cint32;
Provider: PAnsiChar;
ModelType: PAnsiChar;
ModelingUnit: PAnsiChar;
BpeVocab: PAnsiChar;
TeleSpeechCtc: PAnsiChar;
SenseVoice: SherpaOnnxOfflineSenseVoiceModelConfig;
end;
SherpaOnnxOfflineRecognizerConfig = record
FeatConfig: SherpaOnnxFeatureConfig;
ModelConfig: SherpaOnnxOfflineModelConfig;
LMConfig: SherpaOnnxOfflineLMConfig;
DecodingMethod: PAnsiChar;
MaxActivePaths: cint32;
HotwordsFile: PAnsiChar;
HotwordsScore: Single;
RuleFsts: PAnsiChar;
RuleFars: PAnsiChar;
BlankPenalty: Single;
end;
PSherpaOnnxOfflineRecognizerConfig = ^SherpaOnnxOfflineRecognizerConfig;
function SherpaOnnxCreateOnlineRecognizer(Config: PSherpaOnnxOnlineRecognizerConfig): Pointer; cdecl;
external SherpaOnnxLibName;
... ... @@ -244,6 +409,31 @@ function SherpaOnnxGetOnlineStreamResultAsJson(Recognizer: Pointer; Stream: Poin
procedure SherpaOnnxDestroyOnlineStreamResultJson(PJson: PAnsiChar); cdecl;
external SherpaOnnxLibName;
function SherpaOnnxCreateOfflineRecognizer(Config: PSherpaOnnxOfflineRecognizerConfig): Pointer; cdecl;
external SherpaOnnxLibName;
procedure SherpaOnnxDestroyOfflineRecognizer(Recognizer: Pointer); cdecl;
external SherpaOnnxLibName;
function SherpaOnnxCreateOfflineStream(Recognizer: Pointer): Pointer; cdecl;
external SherpaOnnxLibName;
procedure SherpaOnnxDestroyOfflineStream(Stream: Pointer); cdecl;
external SherpaOnnxLibName;
procedure SherpaOnnxAcceptWaveformOffline(Stream: Pointer;
SampleRate: cint32; Samples: pcfloat; N: cint32); cdecl;
external SherpaOnnxLibName;
procedure SherpaOnnxDecodeOfflineStream(Recognizer: Pointer; Stream: Pointer); cdecl;
external SherpaOnnxLibName;
function SherpaOnnxGetOfflineStreamResultAsJson(Stream: Pointer): PAnsiChar; cdecl;
external SherpaOnnxLibName;
procedure SherpaOnnxDestroyOfflineStreamResultJson(Json: PAnsiChar); cdecl;
external SherpaOnnxLibName;
function SherpaOnnxReadWaveWrapper(Filename: PAnsiChar): PSherpaOnnxWave; cdecl;
external SherpaOnnxLibName name 'SherpaOnnxReadWave';
... ... @@ -322,7 +512,7 @@ end;
function TSherpaOnnxOnlineRecognizerConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOnlineRecognizerConfig(FeatConfg := %s, ' +
Result := Format('TSherpaOnnxOnlineRecognizerConfig(FeatConfig := %s, ' +
'ModelConfig := %s, ' +
'DecodingMethod := %s, ' +
'MaxActivePaths := %d, ' +
... ... @@ -375,7 +565,7 @@ begin
Result := Format('TSherpaOnnxOnlineRecognizerResult(Text := %s, ' +
'Tokens := %s, ' +
'Timestamps := %s, ' +
'Timestamps := %s' +
')',
[Self.Text, TokensStr, TimestampStr]);
end;
... ... @@ -531,4 +721,268 @@ begin
SherpaOnnxOnlineStreamInputFinished(Self.Handle);
end;
function TSherpaOnnxOfflineTransducerModelConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineTransducerModelConfig(' +
'Encoder := %s, ' +
'Decoder := %s, ' +
'Joiner := %s' +
')',
[Self.Encoder, Self.Decoder, Self.Joiner]);
end;
function TSherpaOnnxOfflineParaformerModelConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineParaformerModelConfig(Model := %s)',
[Self.Model]);
end;
function TSherpaOnnxOfflineNemoEncDecCtcModelConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineNemoEncDecCtcModelConfig(Model := %s)',
[Self.Model]);
end;
function TSherpaOnnxOfflineWhisperModelConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineWhisperModelConfig(' +
'Encoder := %s, ' +
'Decoder := %s, ' +
'Language := %s, ' +
'Task := %s, ' +
'TailPaddings := %d' +
')',
[Self.Encoder, Self.Decoder, Self.Language, Self.Task, Self.TailPaddings]);
end;
function TSherpaOnnxOfflineTdnnModelConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineTdnnModelConfig(Model := %s)',
[Self.Model]);
end;
function TSherpaOnnxOfflineLMConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineLMConfig(' +
'Model := %s, ' +
'Scale := %.1f' +
')',
[Self.Model, Self.Scale]);
end;
function TSherpaOnnxOfflineSenseVoiceModelConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineSenseVoiceModelConfig(' +
'Model := %s, ' +
'Language := %s, ' +
'UseItn := %s' +
')',
[Self.Model, Self.Language, Self.UseItn.ToString]);
end;
function TSherpaOnnxOfflineModelConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineModelConfig(' +
'Transducer := %s, ' +
'Paraformer := %s, ' +
'NeMoCtc := %s, ' +
'Whisper := %s, ' +
'Tdnn := %s, ' +
'Tokens := %s, ' +
'NumThreads := %d, ' +
'Debug := %s, ' +
'Provider := %s, ' +
'ModelType := %s, ' +
'ModelingUnit := %s, ' +
'BpeVocab := %s, ' +
'TeleSpeechCtc := %s, ' +
'SenseVoice := %s' +
')',
[Self.Transducer.ToString, Self.Paraformer.ToString,
Self.NeMoCtc.ToString, Self.Whisper.ToString, Self.Tdnn.ToString,
Self.Tokens, Self.NumThreads, Self.Debug.ToString, Self.Provider,
Self.ModelType, Self.ModelingUnit, Self.BpeVocab,
Self.TeleSpeechCtc, Self.SenseVoice.ToString
]);
end;
function TSherpaOnnxOfflineRecognizerConfig.ToString: AnsiString;
begin
Result := Format('TSherpaOnnxOfflineRecognizerConfig(' +
'FeatConfig := %s, ' +
'ModelConfig := %s, ' +
'LMConfig := %s, ' +
'DecodingMethod := %s, ' +
'MaxActivePaths := %d, ' +
'HotwordsFile := %s, ' +
'HotwordsScore := %.1f, ' +
'RuleFsts := %s, ' +
'RuleFars := %s, ' +
'BlankPenalty := %1.f' +
')',
[Self.FeatConfig.ToString, Self.ModelConfig.ToString,
Self.LMConfig.ToString, Self.DecodingMethod, Self.MaxActivePaths,
Self.HotwordsFile, Self.HotwordsScore, Self.RuleFsts, Self.RuleFars,
Self.BlankPenalty
]);
end;
constructor TSherpaOnnxOfflineRecognizer.Create(Config: TSherpaOnnxOfflineRecognizerConfig);
var
C: SherpaOnnxOfflineRecognizerConfig;
begin
Initialize(C);
C.FeatConfig.SampleRate := Config.FeatConfig.SampleRate;
C.FeatConfig.FeatureDim := Config.FeatConfig.FeatureDim;
C.ModelConfig.Transducer.Encoder := PAnsiChar(Config.ModelConfig.Transducer.Encoder);
C.ModelConfig.Transducer.Decoder := PAnsiChar(Config.ModelConfig.Transducer.Decoder);
C.ModelConfig.Transducer.Joiner := PAnsiChar(Config.ModelConfig.Transducer.Joiner);
C.ModelConfig.Paraformer.Model := PAnsiChar(Config.ModelConfig.Paraformer.Model);
C.ModelConfig.NeMoCtc.Model := PAnsiChar(Config.ModelConfig.NeMoCtc.Model);
C.ModelConfig.Whisper.Encoder := PAnsiChar(Config.ModelConfig.Whisper.Encoder);
C.ModelConfig.Whisper.Decoder := PAnsiChar(Config.ModelConfig.Whisper.Decoder);
C.ModelConfig.Whisper.Language := PAnsiChar(Config.ModelConfig.Whisper.Language);
C.ModelConfig.Whisper.Task := PAnsiChar(Config.ModelConfig.Whisper.Task);
C.ModelConfig.Whisper.TailPaddings := Config.ModelConfig.Whisper.TailPaddings;
C.ModelConfig.Tdnn.Model := PAnsiChar(Config.ModelConfig.Tdnn.Model);
C.ModelConfig.Tokens := PAnsiChar(Config.ModelConfig.Tokens);
C.ModelConfig.NumThreads := Config.ModelConfig.NumThreads;
C.ModelConfig.Debug := Ord(Config.ModelConfig.Debug);
C.ModelConfig.Provider := PAnsiChar(Config.ModelConfig.Provider);
C.ModelConfig.ModelType := PAnsiChar(Config.ModelConfig.ModelType);
C.ModelConfig.ModelingUnit := PAnsiChar(Config.ModelConfig.ModelingUnit);
C.ModelConfig.BpeVocab := PAnsiChar(Config.ModelConfig.BpeVocab);
C.ModelConfig.TeleSpeechCtc := PAnsiChar(Config.ModelConfig.TeleSpeechCtc);
C.ModelConfig.SenseVoice.Model := PAnsiChar(Config.ModelConfig.SenseVoice.Model);
C.ModelConfig.SenseVoice.Language := PAnsiChar(Config.ModelConfig.SenseVoice.Language);
C.ModelConfig.SenseVoice.UseItn := Ord(Config.ModelConfig.SenseVoice.UseItn);
C.LMConfig.Model := PAnsiChar(Config.LMConfig.Model);
C.LMConfig.Scale := Config.LMConfig.Scale;
C.DecodingMethod := PAnsiChar(Config.DecodingMethod);
C.MaxActivePaths := Config.MaxActivePaths;
C.HotwordsFile := PAnsiChar(Config.HotwordsFile);
C.HotwordsScore := Config.HotwordsScore;
C.RuleFsts := PAnsiChar(Config.RuleFsts);
C.RuleFars := PAnsiChar(Config.RuleFars);
C.BlankPenalty := Config.BlankPenalty;
Self.Handle := SherpaOnnxCreateOfflineRecognizer(@C);
end;
destructor TSherpaOnnxOfflineRecognizer.Destroy;
begin
SherpaOnnxDestroyOfflineRecognizer(Self.Handle);
Self.Handle := nil;
end;
function TSherpaOnnxOfflineRecognizer.CreateStream: TSherpaOnnxOfflineStream;
var
Stream: Pointer;
begin
Stream := SherpaOnnxCreateOfflineStream(Self.Handle);
Result := TSherpaOnnxOfflineStream.Create(Stream);
end;
procedure TSherpaOnnxOfflineRecognizer.Decode(Stream: TSherpaOnnxOfflineStream);
begin
SherpaOnnxDecodeOfflineStream(Self.Handle, Stream.Handle);
end;
function TSherpaOnnxOfflineRecognizer.GetResult(Stream: TSherpaOnnxOfflineStream): TSherpaOnnxOfflineRecognizerResult;
var
pJson: PAnsiChar;
JsonData: TJSONData;
JsonObject : TJSONObject;
JsonEnum: TJSONEnum;
I: Integer;
begin
pJson := SherpaOnnxGetOfflineStreamResultAsJson(Stream.Handle);
JsonData := GetJSON(AnsiString(pJson), False);
JsonObject := JsonData as TJSONObject;
Result.Text := JsonObject.Strings['text'];
SetLength(Result.Tokens, JsonObject.Arrays['tokens'].Count);
I := 0;
for JsonEnum in JsonObject.Arrays['tokens'] do
begin
Result.Tokens[I] := JsonEnum.Value.AsString;
Inc(I);
end;
SetLength(Result.Timestamps, JsonObject.Arrays['timestamps'].Count);
I := 0;
for JsonEnum in JsonObject.Arrays['timestamps'] do
begin
Result.Timestamps[I] := JsonEnum.Value.AsFloat;
Inc(I);
end;
SherpaOnnxDestroyOfflineStreamResultJson(pJson);
end;
constructor TSherpaOnnxOfflineStream.Create(P: Pointer);
begin
Self.Handle := P;
end;
destructor TSherpaOnnxOfflineStream.Destroy;
begin
SherpaOnnxDestroyOfflineStream(Self.Handle);
Self.Handle := nil;
end;
procedure TSherpaOnnxOfflineStream.AcceptWaveform(Samples: array of Single; SampleRate: Integer);
begin
SherpaOnnxAcceptWaveformOffline(Self.Handle, SampleRate, pcfloat(Samples),
Length(Samples));
end;
function TSherpaOnnxOfflineRecognizerResult.ToString: AnsiString;
var
TokensStr: AnsiString;
S: AnsiString;
TimestampStr: AnsiString;
T: Single;
Sep: AnsiString;
begin
TokensStr := '[';
Sep := '';
for S in Self.Tokens do
begin
TokensStr := TokensStr + Sep + S;
Sep := ', ';
end;
TokensStr := TokensStr + ']';
TimestampStr := '[';
Sep := '';
for T in Self.Timestamps do
begin
TimestampStr := TimestampStr + Sep + Format('%.2f', [T]);
Sep := ', ';
end;
TimestampStr := TimestampStr + ']';
Result := Format('TSherpaOnnxOfflineRecognizerResult(Text := %s, ' +
'Tokens := %s, ' +
'Timestamps := %s' +
')',
[Self.Text, TokensStr, TimestampStr]);
end;
end.
... ...