Fangjun Kuang
Committed by GitHub

Support resampling (#77)

... ... @@ -78,8 +78,6 @@ def get_args():
def main():
sample_rate = 16000
args = get_args()
assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
... ... @@ -95,12 +93,16 @@ def main():
decoder=args.decoder,
joiner=args.joiner,
num_threads=args.num_threads,
sample_rate=sample_rate,
sample_rate=16000,
feature_dim=80,
decoding_method=args.decoding_method,
)
with wave.open(args.wave_filename) as f:
assert f.getframerate() == sample_rate, f.getframerate()
# If the wave file has a different sampling rate from the one
# expected by the model (16 kHz in our case), we will do
# resampling inside sherpa-onnx
wave_file_sample_rate = f.getframerate()
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
... ... @@ -110,17 +112,17 @@ def main():
samples_float32 = samples_float32 / 32768
duration = len(samples_float32) / sample_rate
duration = len(samples_float32) / wave_file_sample_rate
start_time = time.time()
print("Started!")
stream = recognizer.create_stream()
stream.accept_waveform(sample_rate, samples_float32)
stream.accept_waveform(wave_file_sample_rate, samples_float32)
tail_paddings = np.zeros(int(0.2 * sample_rate), dtype=np.float32)
stream.accept_waveform(sample_rate, tail_paddings)
tail_paddings = np.zeros(int(0.2 * wave_file_sample_rate), dtype=np.float32)
stream.accept_waveform(wave_file_sample_rate, tail_paddings)
stream.input_finished()
... ...
... ... @@ -100,7 +100,9 @@ def main():
recognizer = create_recognizer()
print("Started! Please speak")
sample_rate = 16000
# The model is using 16 kHz, we use 48 kHz here to demonstrate that
# sherpa-onnx will do resampling inside.
sample_rate = 48000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
last_result = ""
stream = recognizer.create_stream()
... ...
... ... @@ -92,9 +92,12 @@ def create_recognizer():
def main():
print("Started! Please speak")
recognizer = create_recognizer()
sample_rate = 16000
print("Started! Please speak")
# The model is using 16 kHz, we use 48 kHz here to demonstrate that
# sherpa-onnx will do resampling inside.
sample_rate = 48000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
last_result = ""
stream = recognizer.create_stream()
... ...
... ... @@ -115,8 +115,9 @@ void DestoryOnlineStream(SherpaOnnxOnlineStream *stream);
/// decoding.
///
/// @param stream A pointer returned by CreateOnlineStream().
/// @param sample_rate Sampler rate of the input samples. It has to be 16 kHz
/// for models from icefall.
/// @param sample_rate Sample rate of the input samples. If it is different
/// from config.feat_config.sample_rate, we will do
/// resampling inside sherpa-onnx.
/// @param samples A pointer to a 1-D array containing audio samples.
/// The range of samples has to be normalized to [-1, 1].
/// @param n Number of elements in the samples array.
... ...
... ... @@ -11,6 +11,8 @@
#include <vector>
#include "kaldi-native-fbank/csrc/online-feature.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/resample.h"
namespace sherpa_onnx {
... ... @@ -50,6 +52,46 @@ class FeatureExtractor::Impl {
void AcceptWaveform(int32_t sampling_rate, const float *waveform, int32_t n) {
std::lock_guard<std::mutex> lock(mutex_);
if (resampler_) {
if (sampling_rate != resampler_->GetInputSamplingRate()) {
SHERPA_ONNX_LOGE(
"You changed the input sampling rate!! Expected: %d, given: "
"%d",
resampler_->GetInputSamplingRate(), sampling_rate);
exit(-1);
}
std::vector<float> samples;
resampler_->Resample(waveform, n, false, &samples);
fbank_->AcceptWaveform(opts_.frame_opts.samp_freq, samples.data(),
samples.size());
return;
}
if (sampling_rate != opts_.frame_opts.samp_freq) {
SHERPA_ONNX_LOGE(
"Creating a resampler:\n"
" in_sample_rate: %d\n"
" output_sample_rate: %d\n",
sampling_rate, static_cast<int32_t>(opts_.frame_opts.samp_freq));
float min_freq =
std::min<int32_t>(sampling_rate, opts_.frame_opts.samp_freq);
float lowpass_cutoff = 0.99 * 0.5 * min_freq;
int32_t lowpass_filter_width = 6;
resampler_ = std::make_unique<LinearResample>(
sampling_rate, opts_.frame_opts.samp_freq, lowpass_cutoff,
lowpass_filter_width);
std::vector<float> samples;
resampler_->Resample(waveform, n, false, &samples);
fbank_->AcceptWaveform(opts_.frame_opts.samp_freq, samples.data(),
samples.size());
return;
}
fbank_->AcceptWaveform(sampling_rate, waveform, n);
}
... ... @@ -100,6 +142,7 @@ class FeatureExtractor::Impl {
std::unique_ptr<knf::OnlineFbank> fbank_;
knf::FbankOptions opts_;
mutable std::mutex mutex_;
std::unique_ptr<LinearResample> resampler_;
};
FeatureExtractor::FeatureExtractor(const FeatureExtractorConfig &config /*={}*/)
... ...
... ... @@ -29,9 +29,11 @@ class FeatureExtractor {
~FeatureExtractor();
/**
@param sampling_rate The sampling_rate of the input waveform. Should match
the one expected by the feature extractor.
@param waveform Pointer to a 1-D array of size n
@param sampling_rate The sampling_rate of the input waveform. If it does
not equal to config.sampling_rate, we will do
resampling inside.
@param waveform Pointer to a 1-D array of size n. It must be normalized to
the range [-1, 1].
@param n Number of entries in waveform
*/
void AcceptWaveform(int32_t sampling_rate, const float *waveform, int32_t n);
... ...
... ... @@ -16,7 +16,7 @@ class OnlineStream::Impl {
explicit Impl(const FeatureExtractorConfig &config)
: feat_extractor_(config) {}
void AcceptWaveform(float sampling_rate, const float *waveform, int32_t n) {
void AcceptWaveform(int32_t sampling_rate, const float *waveform, int32_t n) {
feat_extractor_.AcceptWaveform(sampling_rate, waveform, n);
}
... ... @@ -67,7 +67,7 @@ OnlineStream::OnlineStream(const FeatureExtractorConfig &config /*= {}*/)
OnlineStream::~OnlineStream() = default;
void OnlineStream::AcceptWaveform(float sampling_rate, const float *waveform,
void OnlineStream::AcceptWaveform(int32_t sampling_rate, const float *waveform,
int32_t n) {
impl_->AcceptWaveform(sampling_rate, waveform, n);
}
... ...
... ... @@ -20,12 +20,14 @@ class OnlineStream {
~OnlineStream();
/**
@param sampling_rate The sampling_rate of the input waveform. Should match
the one expected by the feature extractor.
@param waveform Pointer to a 1-D array of size n
@param sampling_rate The sampling_rate of the input waveform. If it does
not equal to config.sampling_rate, we will do
resampling inside.
@param waveform Pointer to a 1-D array of size n. It must be normalized to
the range [-1, 1].
@param n Number of entries in waveform
*/
void AcceptWaveform(float sampling_rate, const float *waveform, int32_t n);
void AcceptWaveform(int32_t sampling_rate, const float *waveform, int32_t n);
/**
* InputFinished() tells the class you won't be providing any
... ...
... ... @@ -76,6 +76,7 @@ OnlineTransducerModifiedBeamSearchDecoder::GetEmptyResult() const {
std::vector<int64_t> blanks(context_size, blank_id);
Hypotheses blank_hyp({{blanks, 0}});
r.hyps = std::move(blank_hyp);
r.tokens = std::move(blanks);
return r;
}
... ...
... ... @@ -8,13 +8,27 @@
namespace sherpa_onnx {
constexpr const char *kAcceptWaveformUsage = R"(
Process audio samples.
Args:
sample_rate:
Sample rate of the input samples. If it is different from the one
expected by the model, we will do resampling inside.
waveform:
A 1-D float32 tensor containing audio samples. It must be normalized
to the range [-1, 1].
)";
void PybindOnlineStream(py::module *m) {
using PyClass = OnlineStream;
py::class_<PyClass>(*m, "OnlineStream")
.def("accept_waveform",
[](PyClass &self, float sample_rate, py::array_t<float> waveform) {
self.AcceptWaveform(sample_rate, waveform.data(), waveform.size());
})
.def(
"accept_waveform",
[](PyClass &self, float sample_rate, py::array_t<float> waveform) {
self.AcceptWaveform(sample_rate, waveform.data(), waveform.size());
},
py::arg("sample_rate"), py::arg("waveform"), kAcceptWaveformUsage)
.def("input_finished", &PyClass::InputFinished);
}
... ...