Fangjun Kuang
Committed by GitHub

Add UVR models for source separation. (#2266)

@@ -4,9 +4,6 @@ on: @@ -4,9 +4,6 @@ on:
4 push: 4 push:
5 branches: 5 branches:
6 - master 6 - master
7 - pull_request:  
8 - branches:  
9 - - master  
10 7
11 workflow_dispatch: 8 workflow_dispatch:
12 9
  1 +name: export-uvr-to-onnx
  2 +
  3 +on:
  4 + push:
  5 + branches:
  6 + - uvr
  7 + workflow_dispatch:
  8 +
  9 +concurrency:
  10 + group: export-uvr-to-onnx-${{ github.ref }}
  11 + cancel-in-progress: true
  12 +
  13 +jobs:
  14 + export-uvr-to-onnx:
  15 + if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
  16 + name: export UVR to ONNX
  17 + runs-on: ${{ matrix.os }}
  18 + strategy:
  19 + fail-fast: false
  20 + matrix:
  21 + os: [macos-latest]
  22 + python-version: ["3.10"]
  23 +
  24 + steps:
  25 + - uses: actions/checkout@v4
  26 +
  27 + - name: Setup Python ${{ matrix.python-version }}
  28 + uses: actions/setup-python@v5
  29 + with:
  30 + python-version: ${{ matrix.python-version }}
  31 +
  32 + - name: Install dependencies
  33 + shell: bash
  34 + run: |
  35 + pip install "numpy<2" onnx==1.17.0 onnxruntime==1.17.1 onnxmltools kaldi-native-fbank librosa soundfile
  36 +
  37 + - name: Run
  38 + shell: bash
  39 + run: |
  40 + cd scripts/uvr_mdx
  41 + curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/source-separation-models/audio_example.wav
  42 + ls -lh audio_example.wav
  43 + ./run.sh
  44 +
  45 + - name: Collect mp3 files
  46 + shell: bash
  47 + run: |
  48 + mv -v scripts/uvr_mdx/*.mp3 ./
  49 + ls -lh *.mp3
  50 +
  51 + - uses: actions/upload-artifact@v4
  52 + with:
  53 + name: generated-mp3
  54 + path: ./*.mp3
  55 +
  56 + - name: Collect models
  57 + shell: bash
  58 + run: |
  59 + mv -v scripts/uvr_mdx/models/*.onnx ./
  60 + ls -lh *.onnx
  61 +
  62 + - name: Release
  63 + uses: svenstaro/upload-release-action@v2
  64 + with:
  65 + file_glob: true
  66 + file: ./*.onnx
  67 + overwrite: true
  68 + repo_name: k2-fsa/sherpa-onnx
  69 + repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
  70 + tag: source-separation-models
  71 +
  72 + - name: Publish to huggingface
  73 + env:
  74 + HF_TOKEN: ${{ secrets.HF_TOKEN }}
  75 + uses: nick-fields/retry@v3
  76 + with:
  77 + max_attempts: 20
  78 + timeout_seconds: 200
  79 + shell: bash
  80 + command: |
  81 + git config --global user.email "csukuangfj@gmail.com"
  82 + git config --global user.name "Fangjun Kuang"
  83 +
  84 + export GIT_LFS_SKIP_SMUDGE=1
  85 + export GIT_CLONE_PROTECTION_ACTIVE=false
  86 +
  87 + rm -rf huggingface
  88 + git clone https://huggingface.co/k2-fsa/sherpa-onnx-models huggingface
  89 + cd huggingface
  90 + mkdir -p source-separation-models
  91 + cp -av ../*.onnx ./source-separation-models
  92 + git lfs track "*.onnx"
  93 + git status
  94 + git add .
  95 + ls -lh
  96 + git status
  97 + git commit -m "add source separation models"
  98 + git push https://csukuangfj:$HF_TOKEN@huggingface.co/k2-fsa/sherpa-onnx-models main
  1 +# Introduction
  2 +
  3 +This folder contains scripts for converting models from
  4 +https://github.com/TRvlvr/model_repo/releases/tag/all_public_uvr_models
  5 +to sherpa-onnx.
  1 +#!/usr/bin/env python3
  2 +# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
  3 +
  4 +import argparse
  5 +from pathlib import Path
  6 +
  7 +import onnx
  8 +import onnxmltools
  9 +import onnxruntime
  10 +from onnxmltools.utils.float16_converter import convert_float_to_float16
  11 +from onnxruntime.quantization import QuantType, quantize_dynamic
  12 +
  13 +
  14 +def get_args():
  15 + parser = argparse.ArgumentParser(
  16 + formatter_class=argparse.ArgumentDefaultsHelpFormatter
  17 + )
  18 +
  19 + parser.add_argument(
  20 + "--filename",
  21 + type=str,
  22 + required=True,
  23 + help="Path to onnx model",
  24 + )
  25 +
  26 + return parser.parse_args()
  27 +
  28 +
  29 +def export_onnx_fp16(onnx_fp32_path, onnx_fp16_path):
  30 + onnx_fp32_model = onnxmltools.utils.load_model(onnx_fp32_path)
  31 + onnx_fp16_model = convert_float_to_float16(onnx_fp32_model, keep_io_types=True)
  32 + onnxmltools.utils.save_model(onnx_fp16_model, onnx_fp16_path)
  33 +
  34 +
  35 +def validate(model: onnxruntime.InferenceSession):
  36 + for i in model.get_inputs():
  37 + print(i)
  38 +
  39 + print("-----")
  40 +
  41 + for i in model.get_outputs():
  42 + print(i)
  43 +
  44 + assert len(model.get_inputs()) == 1, len(model.get_inputs())
  45 + assert len(model.get_outputs()) == 1, len(model.get_outputs())
  46 +
  47 + inp = model.get_inputs()[0]
  48 + outp = model.get_outputs()[0]
  49 +
  50 + assert len(inp.shape) == 4, inp.shape
  51 + assert len(outp.shape) == 4, outp.shape
  52 +
  53 + assert inp.shape[1:] == outp.shape[1:], (inp.shape, outp.shape)
  54 +
  55 +
  56 +def add_meta_data(filename, meta_data):
  57 + model = onnx.load(filename)
  58 +
  59 + print(model.metadata_props)
  60 +
  61 + while len(model.metadata_props):
  62 + model.metadata_props.pop()
  63 +
  64 + for key, value in meta_data.items():
  65 + meta = model.metadata_props.add()
  66 + meta.key = key
  67 + meta.value = str(value)
  68 + print("--------------------")
  69 +
  70 + print(model.metadata_props)
  71 +
  72 + onnx.save(model, filename)
  73 +
  74 +
  75 +def main():
  76 + args = get_args()
  77 + filename = Path(args.filename)
  78 + if not filename.is_file():
  79 + raise ValueError(f"{filename} does not exist")
  80 +
  81 + name = filename.stem
  82 + print("name", name)
  83 +
  84 + model = onnx.load(str(filename))
  85 +
  86 + session_opts = onnxruntime.SessionOptions()
  87 + session_opts.log_severity_level = 3
  88 + sess = onnxruntime.InferenceSession(
  89 + str(filename), session_opts, providers=["CPUExecutionProvider"]
  90 + )
  91 + validate(sess)
  92 +
  93 + inp = sess.get_inputs()[0]
  94 + outp = sess.get_outputs()[0]
  95 +
  96 + meta_data = {
  97 + "model_type": "UVR",
  98 + "model_name": name,
  99 + "sample_rate": 44100,
  100 + "comment": "This model is downloaded from https://github.com/TRvlvr/model_repo/releases",
  101 + "n_fft": inp.shape[2] * 2,
  102 + "center": 1,
  103 + "window_type": "hann",
  104 + "win_length": inp.shape[2] * 2,
  105 + "hop_length": 1024,
  106 + "dim_t": inp.shape[3],
  107 + "dim_f": inp.shape[2],
  108 + "dim_c": inp.shape[1],
  109 + "stems": 2,
  110 + }
  111 + add_meta_data(str(filename), meta_data)
  112 +
  113 + filename_fp16 = f"./{name}.fp16.onnx"
  114 + export_onnx_fp16(filename, filename_fp16)
  115 +
  116 +
  117 +if __name__ == "__main__":
  118 + main()
  1 +#!/usr/bin/env bash
  2 +# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
  3 +
  4 +set -ex
  5 +
  6 +
  7 +# Please see https://github.com/TRvlvr/model_repo/releases/tag/all_public_uvr_models
  8 +models=(
  9 +UVR-MDX-NET-Inst_1.onnx
  10 +UVR-MDX-NET-Inst_2.onnx
  11 +UVR-MDX-NET-Inst_3.onnx
  12 +UVR-MDX-NET-Inst_HQ_1.onnx
  13 +UVR-MDX-NET-Inst_HQ_2.onnx
  14 +UVR-MDX-NET-Inst_HQ_3.onnx
  15 +UVR-MDX-NET-Inst_HQ_4.onnx
  16 +UVR-MDX-NET-Inst_HQ_5.onnx
  17 +UVR-MDX-NET-Inst_Main.onnx
  18 +UVR-MDX-NET-Voc_FT.onnx
  19 +UVR-MDX-NET_Crowd_HQ_1.onnx
  20 +UVR_MDXNET_1_9703.onnx
  21 +UVR_MDXNET_2_9682.onnx
  22 +UVR_MDXNET_3_9662.onnx
  23 +UVR_MDXNET_9482.onnx
  24 +UVR_MDXNET_KARA.onnx
  25 +UVR_MDXNET_KARA_2.onnx
  26 +UVR_MDXNET_Main.onnx
  27 +)
  28 +
  29 +mkdir -p models
  30 +for m in ${models[@]}; do
  31 + if [ ! -f models/$m ]; then
  32 + curl -SL --output models/$m https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/$m
  33 + fi
  34 +done
  35 +
  36 +ls -lh models
  37 +
  38 +for m in ${models[@]}; do
  39 + echo "----------$m----------"
  40 + python3 ./add_meta_data_and_quantize.py --filename models/$m
  41 +
  42 + ls -lh models/
  43 +done
  44 +
  45 +if [ -f ./audio_example.wav ]; then
  46 + for m in ${models[@]}; do
  47 + ./test.py --model-filename ./models/$m --audio-filename ./audio_example.wav
  48 + name=$(basename -s .onnx $m)
  49 + mv -v vocals.mp3 ${name}_vocals.mp3
  50 + mv -v non_vocals.mp3 ${name}_non_vocals.mp3
  51 + done
  52 +
  53 + ls -lh *.mp3
  54 +fi
  1 +#!/usr/bin/env python3
  2 +# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
  3 +
  4 +import onnxruntime
  5 +import onnx
  6 +
  7 +"""
  8 +[]
  9 +NodeArg(name='input', type='tensor(float)', shape=['batch_size', 4, 3072, 256])
  10 +-----
  11 +NodeArg(name='output', type='tensor(float)', shape=['batch_size', 4, 3072, 256])
  12 +"""
  13 +
  14 +
  15 +def show(filename):
  16 + model = onnx.load(filename)
  17 + print(model.metadata_props)
  18 +
  19 + session_opts = onnxruntime.SessionOptions()
  20 + session_opts.log_severity_level = 3
  21 + sess = onnxruntime.InferenceSession(
  22 + filename, session_opts, providers=["CPUExecutionProvider"]
  23 + )
  24 + for i in sess.get_inputs():
  25 + print(i)
  26 +
  27 + print("-----")
  28 +
  29 + for i in sess.get_outputs():
  30 + print(i)
  31 +
  32 +
  33 +def main():
  34 + # show("./UVR-MDX-NET-Voc_FT.onnx")
  35 + show("./UVR_MDXNET_1_9703.onnx")
  36 +
  37 +
  38 +if __name__ == "__main__":
  39 + main()
  1 +#!/usr/bin/env python3
  2 +# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
  3 +
  4 +import time
  5 +
  6 +import argparse
  7 +import kaldi_native_fbank as knf
  8 +import librosa
  9 +import numpy as np
  10 +import onnxruntime as ort
  11 +import soundfile as sf
  12 +
  13 +
  14 +def get_args():
  15 + parser = argparse.ArgumentParser(
  16 + formatter_class=argparse.ArgumentDefaultsHelpFormatter
  17 + )
  18 +
  19 + parser.add_argument(
  20 + "--model-filename",
  21 + type=str,
  22 + required=True,
  23 + help="Path to onnx model",
  24 + )
  25 +
  26 + parser.add_argument(
  27 + "--audio-filename",
  28 + type=str,
  29 + required=True,
  30 + help="Path to input audio file",
  31 + )
  32 +
  33 + return parser.parse_args()
  34 +
  35 +
  36 +class OnnxModel:
  37 + def __init__(self, filename):
  38 + session_opts = ort.SessionOptions()
  39 + session_opts.inter_op_num_threads = 4
  40 + session_opts.intra_op_num_threads = 4
  41 +
  42 + self.session_opts = session_opts
  43 + self.model = ort.InferenceSession(
  44 + filename,
  45 + sess_options=self.session_opts,
  46 + providers=["CPUExecutionProvider"],
  47 + )
  48 +
  49 + self.dim_t = self.model.get_outputs()[0].shape[3]
  50 +
  51 + self.dim_f = self.model.get_outputs()[0].shape[2]
  52 +
  53 + self.n_fft = self.dim_f * 2
  54 +
  55 + self.dim_c = self.model.get_outputs()[0].shape[1]
  56 + assert self.dim_c == 4, self.dim_c
  57 +
  58 + self.hop = 1024
  59 + self.n_bins = self.n_fft // 2 + 1
  60 + self.chunk_size = self.hop * (self.dim_t - 1)
  61 +
  62 + self.freq_pad = np.zeros([1, self.dim_c, self.n_bins - self.dim_f, self.dim_t])
  63 +
  64 + print(f"----------inputs for {filename}----------")
  65 + for i in self.model.get_inputs():
  66 + print(i)
  67 +
  68 + print(f"----------outputs for {filename}----------")
  69 +
  70 + for i in self.model.get_outputs():
  71 + print(i)
  72 + print(i.shape)
  73 + print("--------------------")
  74 +
  75 + def __call__(self, x):
  76 + """
  77 + Args:
  78 + x: (batch_size, 4, self.dim_f, self.dim_t)
  79 + Returns:
  80 + spec: (batch_size, 4, self.dim_f, self.dim_t)
  81 + """
  82 + spec = self.model.run(
  83 + [
  84 + self.model.get_outputs()[0].name,
  85 + ],
  86 + {
  87 + self.model.get_inputs()[0].name: x,
  88 + },
  89 + )[0]
  90 +
  91 + return spec
  92 +
  93 +
  94 +def main():
  95 + args = get_args()
  96 + m = OnnxModel(args.model_filename)
  97 +
  98 + stft_config = knf.StftConfig(
  99 + n_fft=m.n_fft,
  100 + hop_length=m.hop,
  101 + win_length=m.n_fft,
  102 + center=True,
  103 + window_type="hann",
  104 + )
  105 + knf_stft = knf.Stft(stft_config)
  106 + knf_istft = knf.IStft(stft_config)
  107 +
  108 + sample_rate = 44100
  109 +
  110 + samples, rate = librosa.load(args.audio_filename, mono=False, sr=sample_rate)
  111 +
  112 + start_time = time.time()
  113 +
  114 + assert rate == sample_rate, (rate, sample_rate)
  115 +
  116 + # samples: (2, 479832) , (num_channels, num_samples), 44100, 10.88
  117 + print("samples", samples.shape, rate, samples.shape[1] / rate)
  118 +
  119 + assert samples.ndim == 2, samples.shape
  120 + assert samples.shape[0] == 2, samples.shape
  121 +
  122 + margin = sample_rate
  123 +
  124 + num_chunks = 15
  125 + chunk_size = num_chunks * sample_rate
  126 +
  127 + # if they are too few samples, reset chunk_size
  128 + if samples.shape[1] < chunk_size:
  129 + chunk_size = samples.shape[1]
  130 +
  131 + if margin > chunk_size:
  132 + margin = chunk_size
  133 +
  134 + segments = []
  135 + for skip in range(0, samples.shape[1], chunk_size):
  136 + start = max(0, skip - margin)
  137 + end = min(skip + chunk_size + margin, samples.shape[1])
  138 + segments.append(samples[:, start:end])
  139 + if end == samples.shape[1]:
  140 + break
  141 +
  142 + sources = []
  143 + for kk, s in enumerate(segments):
  144 + num_samples = s.shape[1]
  145 + trim = m.n_fft // 2
  146 + gen_size = m.chunk_size - 2 * trim
  147 + pad = gen_size - s.shape[1] % gen_size
  148 + mix_p = np.concatenate(
  149 + (
  150 + np.zeros((2, trim)),
  151 + s,
  152 + np.zeros((2, pad)),
  153 + np.zeros((2, trim)),
  154 + ),
  155 + axis=1,
  156 + )
  157 +
  158 + chunk_list = []
  159 + i = 0
  160 + while i < s.shape[1] + pad:
  161 + chunk_list.append(mix_p[:, i : i + m.chunk_size])
  162 + i += gen_size
  163 +
  164 + mix_waves = np.array(chunk_list)
  165 +
  166 + mix_waves_reshaped = mix_waves.reshape(-1, m.chunk_size)
  167 + stft_results = []
  168 + for w in mix_waves_reshaped:
  169 + stft = knf_stft(w)
  170 + stft_results.append(stft)
  171 + real = np.array(
  172 + [np.array(s.real).reshape(s.num_frames, -1) for s in stft_results],
  173 + dtype=np.float32,
  174 + )[:, :, :-1]
  175 + # real: (6, 256, 3072)
  176 +
  177 + real = real.transpose(0, 2, 1)
  178 + # real: (6, 3072, 256)
  179 +
  180 + imag = np.array(
  181 + [np.array(s.imag).reshape(s.num_frames, -1) for s in stft_results],
  182 + dtype=np.float32,
  183 + )[:, :, :-1]
  184 + imag = imag.transpose(0, 2, 1)
  185 + # imag: (6, 3072, 256)
  186 +
  187 + x = np.stack([real, imag], axis=1)
  188 + # x: (6, 2, 3072, 256) -> (batch_size, real_imag, 3072, 256)
  189 + x = x.reshape(-1, m.dim_c, m.dim_f, m.dim_t)
  190 + # x: (3, 4, 3072, 256)
  191 + spec = m(x)
  192 +
  193 + freq_pad = np.repeat(m.freq_pad, spec.shape[0], axis=0)
  194 +
  195 + x = np.concatenate([spec, freq_pad], axis=2)
  196 + # x: (3, 4, 3073, 256)
  197 + x = x.reshape(-1, 2, m.n_bins, m.dim_t)
  198 + # x: (6, 2, 3073, 256)
  199 + x = x.transpose(0, 1, 3, 2)
  200 + # x: (6, 2, 256, 3073)
  201 + num_frames = x.shape[2]
  202 +
  203 + x = x.reshape(x.shape[0], x.shape[1], -1)
  204 + wav_list = []
  205 + for k in range(x.shape[0]):
  206 + istft_result = knf.StftResult(
  207 + real=x[k, 0].reshape(-1).tolist(),
  208 + imag=x[k, 1].reshape(-1).tolist(),
  209 + num_frames=num_frames,
  210 + )
  211 + wav = knf_istft(istft_result)
  212 + wav_list.append(wav)
  213 + wav = np.array(wav_list, dtype=np.float32)
  214 + # wav: (6, 261120)
  215 +
  216 + wav = wav.reshape(-1, 2, wav.shape[-1])
  217 + # wav: (3, 2, 261120)
  218 +
  219 + wav = wav[:, :, trim:-trim]
  220 + # wav: (3, 2, 254976)
  221 +
  222 + wav = wav.transpose(1, 0, 2)
  223 + # wav: (2, 3, 254976)
  224 +
  225 + wav = wav.reshape(2, -1)
  226 + # wav: (2, 764928)
  227 +
  228 + wav = wav[:, :-pad]
  229 + # wav: 2, 705600)
  230 + if kk == 0:
  231 + start = 0
  232 + else:
  233 + start = margin
  234 +
  235 + if kk == len(segments) - 1:
  236 + end = None
  237 + else:
  238 + end = -margin
  239 +
  240 + sources.append(wav[:, start:end])
  241 +
  242 + sources = np.concatenate(sources, axis=-1)
  243 +
  244 + vocals = sources
  245 + non_vocals = samples - vocals
  246 + end_time = time.time()
  247 + elapsed_seconds = end_time - start_time
  248 + print(f"Elapsed seconds: {elapsed_seconds:.3f}")
  249 +
  250 + audio_duration = samples.shape[1] / sample_rate
  251 + real_time_factor = elapsed_seconds / audio_duration
  252 + print(f"Elapsed seconds: {elapsed_seconds:.3f}")
  253 + print(f"Audio duration in seconds: {audio_duration:.3f}")
  254 + print(f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}")
  255 +
  256 + sf.write(f"./vocals.mp3", np.transpose(vocals), sample_rate)
  257 + sf.write(f"./non_vocals.mp3", np.transpose(non_vocals), sample_rate)
  258 +
  259 +
  260 +if __name__ == "__main__":
  261 + main()