Fangjun Kuang
Committed by GitHub

Support using alsa to access the microphone with non-streaming ASR models (#517)

... ... @@ -166,6 +166,7 @@ class BuildExtension(build_ext):
if enable_alsa():
binaries += ["sherpa-onnx-alsa"]
binaries += ["sherpa-onnx-alsa-offline"]
binaries += ["sherpa-onnx-offline-tts-play-alsa"]
binaries += ["sherpa-onnx-alsa-offline-speaker-identification"]
... ...
... ... @@ -59,6 +59,7 @@ def get_binaries_to_install():
if enable_alsa():
binaries += ["sherpa-onnx-alsa"]
binaries += ["sherpa-onnx-alsa-offline"]
binaries += ["sherpa-onnx-offline-tts-play-alsa"]
binaries += ["sherpa-onnx-alsa-offline-speaker-identification"]
... ...
... ... @@ -231,10 +231,12 @@ endif()
if(SHERPA_ONNX_HAS_ALSA AND SHERPA_ONNX_ENABLE_BINARY)
add_executable(sherpa-onnx-alsa sherpa-onnx-alsa.cc alsa.cc)
add_executable(sherpa-onnx-offline-tts-play-alsa sherpa-onnx-offline-tts-play-alsa.cc alsa-play.cc)
add_executable(sherpa-onnx-alsa-offline sherpa-onnx-alsa-offline.cc alsa.cc)
add_executable(sherpa-onnx-alsa-offline-speaker-identification sherpa-onnx-alsa-offline-speaker-identification.cc alsa.cc)
set(exes
sherpa-onnx-alsa
sherpa-onnx-alsa-offline
sherpa-onnx-offline-tts-play-alsa
sherpa-onnx-alsa-offline-speaker-identification
)
... ...
// sherpa-onnx/csrc/sherpa-onnx-alsa-offline.cc
//
// Copyright (c) 2022-2024 Xiaomi Corporation
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <cctype> // std::tolower
#include <chrono> // NOLINT
#include <mutex> // NOLINT
#include <thread> // NOLINT
#include "sherpa-onnx/csrc/alsa.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-recognizer.h"
enum class State {
kIdle,
kRecording,
kDecoding,
};
State state = State::kIdle;
// true to stop the program and exit
bool stop = false;
std::vector<float> samples;
std::mutex samples_mutex;
static void DetectKeyPress() {
SHERPA_ONNX_LOGE("Press Enter to start");
int32_t key;
while (!stop && (key = getchar())) {
if (key != 0x0a) {
continue;
}
switch (state) {
case State::kIdle:
SHERPA_ONNX_LOGE("Start recording. Press Enter to stop recording");
state = State::kRecording;
{
std::lock_guard<std::mutex> lock(samples_mutex);
samples.clear();
}
break;
case State::kRecording:
SHERPA_ONNX_LOGE("Stop recording. Decoding ...");
state = State::kDecoding;
break;
case State::kDecoding:
break;
}
}
}
static void Record(const char *device_name, int32_t expected_sample_rate) {
sherpa_onnx::Alsa alsa(device_name);
if (alsa.GetExpectedSampleRate() != expected_sample_rate) {
fprintf(stderr, "sample rate: %d != %d\n", alsa.GetExpectedSampleRate(),
expected_sample_rate);
exit(-1);
}
int32_t chunk = 0.1 * alsa.GetActualSampleRate();
while (!stop) {
std::lock_guard<std::mutex> lock(samples_mutex);
const std::vector<float> &s = alsa.Read(chunk);
samples.insert(samples.end(), s.begin(), s.end());
}
}
static void Handler(int32_t sig) {
stop = true;
fprintf(stderr, "\nCaught Ctrl + C. Press Enter to exit\n");
}
int32_t main(int32_t argc, char *argv[]) {
signal(SIGINT, Handler);
const char *kUsageMessage = R"usage(
This program uses non-streaming models with microphone for speech recognition.
Usage:
(1) Transducer from icefall
./bin/sherpa-onnx-alsa-offline \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
device_name
(2) Paraformer from FunASR
./bin/sherpa-onnx-alsa-offline \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/model.onnx \
--num-threads=1 \
device_name
(3) Whisper models
./bin/sherpa-onnx-alsa-offline \
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
--num-threads=1 \
device_name
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html
for a list of pre-trained models to download.
The device name specifies which microphone to use in case there are several
on you system. You can use
arecord -l
to find all available microphones on your computer. For instance, if it outputs
**** List of CAPTURE Hardware Devices ****
card 3: UACDemoV10 [UACDemoV1.0], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0
and if you want to select card 3 and the device 0 on that card, please use:
plughw:3,0
as the device_name.
)usage";
sherpa_onnx::ParseOptions po(kUsageMessage);
sherpa_onnx::OfflineRecognizerConfig config;
config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 1) {
fprintf(stderr, "Please provide only 1 argument: the device name\n");
po.PrintUsage();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s\n", config.ToString().c_str());
if (!config.Validate()) {
fprintf(stderr, "Errors in config!\n");
return -1;
}
SHERPA_ONNX_LOGE("Creating recognizer ...");
sherpa_onnx::OfflineRecognizer recognizer(config);
SHERPA_ONNX_LOGE("Recognizer created!");
std::string device_name = po.GetArg(1);
fprintf(stderr, "Use recording device: %s\n", device_name.c_str());
int32_t sample_rate = config.feat_config.sampling_rate;
std::thread t(DetectKeyPress);
std::thread t2(Record, device_name.c_str(), sample_rate);
while (!stop) {
switch (state) {
case State::kIdle:
break;
case State::kRecording:
break;
case State::kDecoding: {
std::vector<float> buf;
{
std::lock_guard<std::mutex> lock(samples_mutex);
buf = std::move(samples);
}
auto s = recognizer.CreateStream();
s->AcceptWaveform(sample_rate, buf.data(), buf.size());
recognizer.DecodeStream(s.get());
SHERPA_ONNX_LOGE("Decoding Done! Result is:");
SHERPA_ONNX_LOGE("%s", s->GetResult().text.c_str());
state = State::kIdle;
SHERPA_ONNX_LOGE("Press Enter to start");
break;
}
}
using namespace std::chrono_literals;
std::this_thread::sleep_for(20ms); // sleep for 20ms
}
t.join();
t2.join();
return 0;
}
... ...