Fangjun Kuang
Committed by GitHub

Add Java API for non-streaming ASR (#807)

正在显示 24 个修改的文件 包含 834 行增加27 行删除
... ... @@ -92,13 +92,9 @@ jobs:
make -j4
ls -lh lib
- name: Run java test
- name: Run java test (Streaming ASR)
shell: bash
run: |
export CMAKE_CXX_COMPILER_LAUNCHER=ccache
export PATH="/usr/lib/ccache:/usr/local/opt/ccache/libexec:$PATH"
cmake --version
cd ./java-api-examples
./run-streaming-decode-file-ctc.sh
# Delete model files to save space
... ... @@ -109,3 +105,16 @@ jobs:
./run-streaming-decode-file-transducer.sh
rm -rf sherpa-onnx-streaming-*
- name: Run java test (Non-Streaming ASR)
shell: bash
run: |
cd ./java-api-examples
./run-non-streaming-decode-file-paraformer.sh
rm -rf sherpa-onnx-paraformer-zh-*
./run-non-streaming-decode-file-transducer.sh
rm -rf sherpa-onnx-zipformer-*
./run-non-streaming-decode-file-whisper.sh
rm -rf sherpa-onnx-whisper-*
... ...
lib
hs_err*
!run-streaming*.sh
!run-non-streaming*.sh
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use an offline paraformer, i.e., non-streaming paraformer,
// to decode files.
import com.k2fsa.sherpa.onnx.*;
public class NonStreamingDecodeFileTransducer {
public static void main(String[] args) {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/paraformer-models.html#csukuangfj-sherpa-onnx-paraformer-zh-2023-03-28-chinese-english
// to download model files
String model = "./sherpa-onnx-paraformer-zh-2023-03-28/model.int8.onnx";
String tokens = "./sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt";
String waveFilename = "./sherpa-onnx-paraformer-zh-2023-03-28/test_wavs/3-sichuan.wav";
WaveReader reader = new WaveReader(waveFilename);
OfflineParaformerModelConfig paraformer =
OfflineParaformerModelConfig.builder().setModel(model).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setParaformer(paraformer)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
OfflineRecognizer recognizer = new OfflineRecognizer(config);
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(reader.getSamples(), reader.getSampleRate());
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
System.out.printf("filename:%s\nresult:%s\n", waveFilename, text);
stream.release();
recognizer.release();
}
}
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use an offline transducer, i.e., non-streaming transducer,
// to decode files.
import com.k2fsa.sherpa.onnx.*;
public class NonStreamingDecodeFileTransducer {
public static void main(String[] args) {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/zipformer-transducer-models.html#sherpa-onnx-zipformer-gigaspeech-2023-12-12-english
// to download model files
String encoder =
"./sherpa-onnx-zipformer-gigaspeech-2023-12-12/encoder-epoch-30-avg-1.int8.onnx";
String decoder = "./sherpa-onnx-zipformer-gigaspeech-2023-12-12/decoder-epoch-30-avg-1.onnx";
String joiner = "./sherpa-onnx-zipformer-gigaspeech-2023-12-12/joiner-epoch-30-avg-1.onnx";
String tokens = "./sherpa-onnx-zipformer-gigaspeech-2023-12-12/tokens.txt";
String waveFilename =
"./sherpa-onnx-zipformer-gigaspeech-2023-12-12/test_wavs/1089-134686-0001.wav";
WaveReader reader = new WaveReader(waveFilename);
OfflineTransducerModelConfig transducer =
OfflineTransducerModelConfig.builder()
.setEncoder(encoder)
.setDecoder(decoder)
.setJoiner(joiner)
.build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setTransducer(transducer)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
OfflineRecognizer recognizer = new OfflineRecognizer(config);
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(reader.getSamples(), reader.getSampleRate());
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
System.out.printf("filename:%s\nresult:%s\n", waveFilename, text);
stream.release();
recognizer.release();
}
}
... ...
// Copyright 2024 Xiaomi Corporation
// This file shows how to use an offline whisper, i.e., non-streaming whisper,
// to decode files.
import com.k2fsa.sherpa.onnx.*;
public class NonStreamingDecodeFileWhisper {
public static void main(String[] args) {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/tiny.en.html
// to download model files
String encoder = "./sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx";
String decoder = "./sherpa-onnx-whisper-tiny.en/tiny.en-decoder.int8.onnx";
String tokens = "./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt";
String waveFilename = "./sherpa-onnx-whisper-tiny.en/test_wavs/1.wav";
WaveReader reader = new WaveReader(waveFilename);
OfflineWhisperModelConfig whisper =
OfflineWhisperModelConfig.builder().setEncoder(encoder).setDecoder(decoder).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setWhisper(whisper)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
OfflineRecognizer recognizer = new OfflineRecognizer(config);
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(reader.getSamples(), reader.getSampleRate());
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
System.out.printf("filename:%s\nresult:%s\n", waveFilename, text);
stream.release();
recognizer.release();
}
}
... ...
... ... @@ -4,8 +4,18 @@ This directory contains examples for the JAVA API of sherpa-onnx.
# Usage
## Streaming Speech recognition
```
./run-streaming-decode-file-ctc.sh
./run-streaming-decode-file-paraformer.sh
./run-streaming-decode-file-transducer.sh
```
## Non-Streaming Speech recognition
```bash
./run-non-streaming-decode-file-paraformer.sh
./run-non-streaming-decode-file-transducer.sh
./run-non-streaming-decode-file-whisper.sh
```
... ...
// Copyright 2022-2023 by zhaoming
// Copyright 2024 Xiaomi Corporation
// This file shows how to use an online CTC model, i.e., streaming CTC model,
... ... @@ -16,8 +15,6 @@ public class StreamingDecodeFileCtc {
String waveFilename = "./sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18/test_wavs/8k.wav";
WaveReader reader = new WaveReader(waveFilename);
System.out.println(reader.getSampleRate());
System.out.println(reader.getSamples().length);
OnlineZipformer2CtcModelConfig ctc =
OnlineZipformer2CtcModelConfig.builder().setModel(model).build();
... ...
// Copyright 2022-2023 by zhaoming
// Copyright 2024 Xiaomi Corporation
// This file shows how to use an online paraformer, i.e., streaming paraformer,
... ... @@ -16,8 +15,6 @@ public class StreamingDecodeFileParaformer {
String waveFilename = "./sherpa-onnx-streaming-paraformer-bilingual-zh-en/test_wavs/2.wav";
WaveReader reader = new WaveReader(waveFilename);
System.out.println(reader.getSampleRate());
System.out.println(reader.getSamples().length);
OnlineParaformerModelConfig paraformer =
OnlineParaformerModelConfig.builder().setEncoder(encoder).setDecoder(decoder).build();
... ...
... ... @@ -22,8 +22,6 @@ public class StreamingDecodeFileTransducer {
"./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/test_wavs/0.wav";
WaveReader reader = new WaveReader(waveFilename);
System.out.println(reader.getSampleRate());
System.out.println(reader.getSamples().length);
OnlineTransducerModelConfig transducer =
OnlineTransducerModelConfig.builder()
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
fi
if [ ! -f ./sherpa-onnx-paraformer-zh-2023-03-28/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
tar xvf sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
rm sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
NonStreamingDecodeFileParaformer.java
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
fi
if [ ! -f ./sherpa-onnx-zipformer-gigaspeech-2023-12-12/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-gigaspeech-2023-12-12.tar.bz2
tar xvf sherpa-onnx-zipformer-gigaspeech-2023-12-12.tar.bz2
rm sherpa-onnx-zipformer-gigaspeech-2023-12-12.tar.bz2
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
NonStreamingDecodeFileTransducer.java
... ...
#!/usr/bin/env bash
set -ex
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
mkdir -p ../build
pushd ../build
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
popd
fi
if [ ! -f ../sherpa-onnx/java-api/build/sherpa-onnx.jar ]; then
pushd ../sherpa-onnx/java-api
make
popd
fi
if [[ ! -f ../build/lib/libsherpa-onnx-jni.dylib && ! -f ../build/lib/libsherpa-onnx-jni.so ]]; then
cmake \
-DSHERPA_ONNX_ENABLE_PYTHON=OFF \
-DSHERPA_ONNX_ENABLE_TESTS=OFF \
-DSHERPA_ONNX_ENABLE_CHECK=OFF \
-DBUILD_SHARED_LIBS=ON \
-DSHERPA_ONNX_ENABLE_PORTAUDIO=OFF \
-DSHERPA_ONNX_ENABLE_JNI=ON \
..
make -j4
ls -lh lib
fi
if [ ! -f ./sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2
tar xvf sherpa-onnx-whisper-tiny.en.tar.bz2
rm sherpa-onnx-whisper-tiny.en.tar.bz2
fi
java \
-Djava.library.path=$PWD/../build/lib \
-cp ../sherpa-onnx/java-api/build/sherpa-onnx.jar \
NonStreamingDecodeFileWhisper.java
... ...
... ... @@ -19,6 +19,15 @@ java_files += OnlineRecognizerConfig.java
java_files += OnlineRecognizerResult.java
java_files += OnlineRecognizer.java
java_files += OfflineTransducerModelConfig.java
java_files += OfflineParaformerModelConfig.java
java_files += OfflineWhisperModelConfig.java
java_files += OfflineModelConfig.java
java_files += OfflineRecognizerConfig.java
java_files += OfflineRecognizerResult.java
java_files += OfflineStream.java
java_files += OfflineRecognizer.java
class_files := $(java_files:%.java=%.class)
java_files := $(addprefix src/$(package_dir)/,$(java_files))
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineModelConfig {
private final OfflineTransducerModelConfig transducer;
private final OfflineParaformerModelConfig paraformer;
private final OfflineWhisperModelConfig whisper;
private final String tokens;
private final int numThreads;
private final boolean debug;
private final String provider;
private final String modelType;
private OfflineModelConfig(Builder builder) {
this.transducer = builder.transducer;
this.paraformer = builder.paraformer;
this.whisper = builder.whisper;
this.tokens = builder.tokens;
this.numThreads = builder.numThreads;
this.debug = builder.debug;
this.provider = builder.provider;
this.modelType = builder.modelType;
}
public static Builder builder() {
return new Builder();
}
public OfflineParaformerModelConfig getParaformer() {
return paraformer;
}
public OfflineTransducerModelConfig getTransducer() {
return transducer;
}
public OfflineWhisperModelConfig getZipformer2Ctc() {
return whisper;
}
public String getTokens() {
return tokens;
}
public int getNumThreads() {
return numThreads;
}
public boolean getDebug() {
return debug;
}
public String getProvider() {
return provider;
}
public String getModelType() {
return modelType;
}
public static class Builder {
private OfflineParaformerModelConfig paraformer = OfflineParaformerModelConfig.builder().build();
private OfflineTransducerModelConfig transducer = OfflineTransducerModelConfig.builder().build();
private OfflineWhisperModelConfig whisper = OfflineWhisperModelConfig.builder().build();
private String tokens = "";
private int numThreads = 1;
private boolean debug = true;
private String provider = "cpu";
private String modelType = "";
public OfflineModelConfig build() {
return new OfflineModelConfig(this);
}
public Builder setTransducer(OfflineTransducerModelConfig transducer) {
this.transducer = transducer;
return this;
}
public Builder setParaformer(OfflineParaformerModelConfig paraformer) {
this.paraformer = paraformer;
return this;
}
public Builder setWhisper(OfflineWhisperModelConfig whisper) {
this.whisper = whisper;
return this;
}
public Builder setTokens(String tokens) {
this.tokens = tokens;
return this;
}
public Builder setNumThreads(int numThreads) {
this.numThreads = numThreads;
return this;
}
public Builder setDebug(boolean debug) {
this.debug = debug;
return this;
}
public Builder setProvider(String provider) {
this.provider = provider;
return this;
}
public Builder setModelType(String modelType) {
this.modelType = modelType;
return this;
}
}
}
\ No newline at end of file
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineParaformerModelConfig {
private final String model;
private OfflineParaformerModelConfig(Builder builder) {
this.model = builder.model;
}
public static Builder builder() {
return new Builder();
}
public String getModel() {
return model;
}
public static class Builder {
private String model = "";
public OfflineParaformerModelConfig build() {
return new OfflineParaformerModelConfig(this);
}
public Builder setModel(String model) {
this.model = model;
return this;
}
}
}
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineRecognizer {
static {
System.loadLibrary("sherpa-onnx-jni");
}
private long ptr = 0; // this is the asr engine ptrss
public OfflineRecognizer(OfflineRecognizerConfig config) {
ptr = newFromFile(config);
}
public void decode(OfflineStream s) {
decode(ptr, s.getPtr());
}
public OfflineStream createStream() {
long p = createStream(ptr);
return new OfflineStream(p);
}
@Override
protected void finalize() throws Throwable {
release();
}
// You'd better call it manually if it is not used anymore
public void release() {
if (this.ptr == 0) {
return;
}
delete(this.ptr);
this.ptr = 0;
}
public OfflineRecognizerResult getResult(OfflineStream s) {
Object[] arr = getResult(s.getPtr());
String text = (String) arr[0];
String[] tokens = (String[]) arr[1];
float[] timestamps = (float[]) arr[2];
return new OfflineRecognizerResult(text, tokens, timestamps);
}
private native void delete(long ptr);
private native long newFromFile(OfflineRecognizerConfig config);
private native long createStream(long ptr);
private native void decode(long ptr, long streamPtr);
private native Object[] getResult(long streamPtr);
}
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineRecognizerConfig {
private final FeatureConfig featConfig;
private final OfflineModelConfig modelConfig;
private final String decodingMethod;
private final int maxActivePaths;
private final String hotwordsFile;
private final float hotwordsScore;
private OfflineRecognizerConfig(Builder builder) {
this.featConfig = builder.featConfig;
this.modelConfig = builder.modelConfig;
this.decodingMethod = builder.decodingMethod;
this.maxActivePaths = builder.maxActivePaths;
this.hotwordsFile = builder.hotwordsFile;
this.hotwordsScore = builder.hotwordsScore;
}
public static Builder builder() {
return new Builder();
}
public OfflineModelConfig getModelConfig() {
return modelConfig;
}
public static class Builder {
private FeatureConfig featConfig = FeatureConfig.builder().build();
private OfflineModelConfig modelConfig = OfflineModelConfig.builder().build();
private String decodingMethod = "greedy_search";
private int maxActivePaths = 4;
private String hotwordsFile = "";
private float hotwordsScore = 1.5f;
public OfflineRecognizerConfig build() {
return new OfflineRecognizerConfig(this);
}
public Builder setFeatureConfig(FeatureConfig featConfig) {
this.featConfig = featConfig;
return this;
}
public Builder setOfflineModelConfig(OfflineModelConfig modelConfig) {
this.modelConfig = modelConfig;
return this;
}
public Builder setDecodingMethod(String decodingMethod) {
this.decodingMethod = decodingMethod;
return this;
}
public Builder setMaxActivePaths(int maxActivePaths) {
this.maxActivePaths = maxActivePaths;
return this;
}
public Builder setHotwordsFile(String hotwordsFile) {
this.hotwordsFile = hotwordsFile;
return this;
}
public Builder setHotwordsScore(float hotwordsScore) {
this.hotwordsScore = hotwordsScore;
return this;
}
}
}
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineRecognizerResult {
private final String text;
private final String[] tokens;
private final float[] timestamps;
public OfflineRecognizerResult(String text, String[] tokens, float[] timestamps) {
this.text = text;
this.tokens = tokens;
this.timestamps = timestamps;
}
public String getText() {
return text;
}
public String[] getTokens() {
return tokens;
}
public float[] getTimestamps() {
return timestamps;
}
}
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineStream {
static {
System.loadLibrary("sherpa-onnx-jni");
}
private long ptr = 0;
public OfflineStream() {
this.ptr = 0;
}
public OfflineStream(long ptr) {
this.ptr = ptr;
}
public long getPtr() {
return ptr;
}
public void setPtr(long ptr) {
this.ptr = ptr;
}
public void acceptWaveform(float[] samples, int sampleRate) {
acceptWaveform(this.ptr, samples, sampleRate);
}
public void release() {
// stream object must be release after used
if (this.ptr == 0) {
return;
}
delete(this.ptr);
this.ptr = 0;
}
@Override
protected void finalize() throws Throwable {
release();
super.finalize();
}
private native void acceptWaveform(long ptr, float[] samples, int sampleRate);
private native void delete(long ptr);
}
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineTransducerModelConfig {
private final String encoder;
private final String decoder;
private final String joiner;
private OfflineTransducerModelConfig(Builder builder) {
this.encoder = builder.encoder;
this.decoder = builder.decoder;
this.joiner = builder.joiner;
}
public static Builder builder() {
return new Builder();
}
public String getEncoder() {
return encoder;
}
public String getDecoder() {
return decoder;
}
public String getJoiner() {
return joiner;
}
public static class Builder {
private String encoder = "";
private String decoder = "";
private String joiner = "";
public OfflineTransducerModelConfig build() {
return new OfflineTransducerModelConfig(this);
}
public Builder setEncoder(String encoder) {
this.encoder = encoder;
return this;
}
public Builder setDecoder(String decoder) {
this.decoder = decoder;
return this;
}
public Builder setJoiner(String joiner) {
this.joiner = joiner;
return this;
}
}
}
... ...
// Copyright 2024 Xiaomi Corporation
package com.k2fsa.sherpa.onnx;
public class OfflineWhisperModelConfig {
private final String encoder;
private final String decoder;
private final String language;
private final String task;
private final int tailPaddings;
private OfflineWhisperModelConfig(Builder builder) {
this.encoder = builder.encoder;
this.decoder = builder.decoder;
this.language = builder.language;
this.task = builder.task;
this.tailPaddings = builder.tailPaddings;
}
public static Builder builder() {
return new Builder();
}
public String getEncoder() {
return encoder;
}
public String getDecoder() {
return decoder;
}
public String getLanguage() {
return language;
}
public String getTask() {
return task;
}
public int getTailPaddings() {
return tailPaddings;
}
public static class Builder {
private String encoder = "";
private String decoder = "";
private String language = "en"; // used only with multilingual models
private String task = "transcribe"; // used only with multilingual models
private int tailPaddings = 1000; // number of frames to pad
public OfflineWhisperModelConfig build() {
return new OfflineWhisperModelConfig(this);
}
public Builder setEncoder(String encoder) {
this.encoder = encoder;
return this;
}
public Builder setDecoder(String decoder) {
this.decoder = decoder;
return this;
}
public Builder setLanguage(String language) {
this.language = language;
return this;
}
public Builder setTask(String task) {
this.task = task;
return this;
}
public Builder setTailPaddings(int tailPaddings) {
this.tailPaddings = tailPaddings;
return this;
}
}
}
... ...
... ... @@ -12,6 +12,7 @@ public class OnlineModelConfig {
private final boolean debug;
private final String provider;
private final String modelType;
private OnlineModelConfig(Builder builder) {
this.transducer = builder.transducer;
this.paraformer = builder.paraformer;
... ...
... ... @@ -15,19 +15,6 @@ public class OnlineRecognizer {
ptr = newFromFile(config);
}
/*
public static float[] readWavFile(String fileName) {
// read data from the filename
Object[] wavdata = readWave(fileName);
Object data = wavdata[0]; // data[0] is float data, data[1] sample rate
float[] floatData = (float[]) data;
return floatData;
}
*/
public void decode(OnlineStream s) {
decode(ptr, s.getPtr());
}
... ... @@ -55,7 +42,7 @@ public class OnlineRecognizer {
release();
}
// recognizer release, you'd better call it manually if not use anymore
// You'd better call it manually if it is not used anymore
public void release() {
if (this.ptr == 0) {
return;
... ...
... ... @@ -12,6 +12,7 @@ public class OnlineRecognizerConfig {
private final int maxActivePaths;
private final String hotwordsFile;
private final float hotwordsScore;
private OnlineRecognizerConfig(Builder builder) {
this.featConfig = builder.featConfig;
this.modelConfig = builder.modelConfig;
... ...