frankyoujian
Committed by GitHub

Support real time hotwords on python (#230)

* support real time hotwords on python

* fix comments
... ... @@ -10,6 +10,9 @@ import argparse
import sys
from pathlib import Path
from typing import List, Tuple
import sentencepiece as spm
try:
import sounddevice as sd
except ImportError:
... ... @@ -70,6 +73,59 @@ def get_args():
help="Valid values are greedy_search and modified_beam_search",
)
parser.add_argument(
"--max-active-paths",
type=int,
default=4,
help="""Used only when --decoding-method is modified_beam_search.
It specifies number of active paths to keep during decoding.
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="",
help="""
Path to bpe.model, it will be used to tokenize contexts biasing phrases.
Used only when --decoding-method=modified_beam_search
""",
)
parser.add_argument(
"--modeling-unit",
type=str,
default="char",
help="""
The type of modeling unit, it will be used to tokenize contexts biasing phrases.
Valid values are bpe, bpe+char, char.
Note: the char here means characters in CJK languages.
Used only when --decoding-method=modified_beam_search
""",
)
parser.add_argument(
"--contexts",
type=str,
default="",
help="""
The context list, it is a string containing some words/phrases separated
with /, for example, 'HELLO WORLD/I LOVE YOU/GO AWAY".
Used only when --decoding-method=modified_beam_search
""",
)
parser.add_argument(
"--context-score",
type=float,
default=1.5,
help="""
The context score of each token for biasing word/phrase. Used only if
--contexts is given.
Used only when --decoding-method=modified_beam_search
""",
)
return parser.parse_args()
... ... @@ -91,11 +147,40 @@ def create_recognizer():
sample_rate=16000,
feature_dim=80,
decoding_method=args.decoding_method,
max_active_paths=args.max_active_paths,
context_score=args.context_score,
)
return recognizer
def encode_contexts(args, contexts: List[str]) -> List[List[int]]:
sp = None
if "bpe" in args.modeling_unit:
assert_file_exists(args.bpe_model)
sp = spm.SentencePieceProcessor()
sp.load(args.bpe_model)
tokens = {}
with open(args.tokens, "r", encoding="utf-8") as f:
for line in f:
toks = line.strip().split()
assert len(toks) == 2, len(toks)
assert toks[0] not in tokens, f"Duplicate token: {toks} "
tokens[toks[0]] = int(toks[1])
return sherpa_onnx.encode_contexts(
modeling_unit=args.modeling_unit,
contexts=contexts,
sp=sp,
tokens_table=tokens,
)
def main():
args = get_args()
contexts_list = []
contexts = [x.strip().upper() for x in args.contexts.split("/") if x.strip()]
if contexts:
print(f"Contexts list: {contexts}")
contexts_list = encode_contexts(args, contexts)
recognizer = create_recognizer()
print("Started! Please speak")
... ... @@ -104,7 +189,10 @@ def main():
sample_rate = 48000
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms
last_result = ""
stream = recognizer.create_stream()
if contexts_list:
stream = recognizer.create_stream(contexts_list=contexts_list)
else:
stream = recognizer.create_stream()
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
... ... @@ -117,7 +205,6 @@ def main():
last_result = result
print("\r{}".format(result), end="", flush=True)
if __name__ == "__main__":
devices = sd.query_devices()
print(devices)
... ...