Fangjun Kuang
Committed by GitHub

Support slicing a shallow copy of a 3-d tensor (#83)

... ... @@ -18,6 +18,7 @@ set(sources
onnx-utils.cc
parse-options.cc
resample.cc
slice.cc
symbol-table.cc
text-utils.cc
transpose.cc
... ... @@ -121,6 +122,7 @@ endif()
if(SHERPA_ONNX_ENABLE_TESTS)
set(sherpa_onnx_test_srcs
cat-test.cc
slice-test.cc
transpose-test.cc
unbind-test.cc
)
... ...
... ... @@ -57,9 +57,6 @@ Ort::Value GetEncoderOutFrame(OrtAllocator *allocator, Ort::Value *encoder_out,
auto offset = num_frames * encoder_out_dim;
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> shape{batch_size, encoder_out_dim};
Ort::Value ans =
... ... @@ -90,9 +87,6 @@ Ort::Value Clone(OrtAllocator *allocator, const Ort::Value *v) {
auto type_and_shape = v->GetTensorTypeAndShapeInfo();
std::vector<int64_t> shape = type_and_shape.GetShape();
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
switch (type_and_shape.GetElementType()) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: {
Ort::Value ans = Ort::Value::CreateTensor<int32_t>(
... ...
// sherpa-onnx/csrc/slice-test.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/slice.h"
#include <numeric>
#include "gtest/gtest.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace sherpa_onnx {
TEST(Slice, Slice3D) {
Ort::AllocatorWithDefaultOptions allocator;
std::array<int64_t, 3> shape{3, 5, 4};
Ort::Value v =
Ort::Value::CreateTensor<float>(allocator, shape.data(), shape.size());
float *p = v.GetTensorMutableData<float>();
std::iota(p, p + shape[0] * shape[1] * shape[2], 0);
auto v1 = Slice(&v, 0, 2, 5);
auto v2 = Slice(&v, 1, 2, 4);
Print3D(&v);
Print2D(&v1);
Print2D(&v2);
// TODO(fangjun): Check that the results are correct
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/csrc/slice.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/slice.h"
#include <assert.h>
#include <vector>
namespace sherpa_onnx {
template <typename T /*=float*/>
Ort::Value Slice(const Ort::Value *v, int32_t dim0, int32_t dim1_start,
int32_t dim1_end) {
std::vector<int64_t> shape = v->GetTensorTypeAndShapeInfo().GetShape();
assert(shape.size() == 3);
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> ans_shape{dim1_end - dim1_start, shape[2]};
const T *src = v->GetTensorData<T>();
src += dim0 * shape[1] * shape[2] + dim1_start * shape[2];
return Ort::Value::CreateTensor(memory_info, const_cast<T *>(src),
ans_shape[0] * ans_shape[1], ans_shape.data(),
ans_shape.size());
}
template Ort::Value Slice<float>(const Ort::Value *v, int32_t dim0,
int32_t dim1_start, int32_t dim1_end);
} // namespace sherpa_onnx
... ...
// sherpa-onnx/csrc/slice.h
//
// Copyright (c) 2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_SLICE_H_
#define SHERPA_ONNX_CSRC_SLICE_H_
#include "onnxruntime_cxx_api.h" // NOLINT
namespace sherpa_onnx {
/** Get a shallow copy by slicing v.
*
* It returns v[dim0, dim1_start:dim1_end]
*
* @param v A 3-D tensor. Its data type is T.
* @param dim0 Start index of the first dimension..
* @param dim1_start Start index of the second dimension.
* @param dim1_end End index of the second dimension.
*
* @return Return a 2-D tensor of shape (dim1_end-dim1_start, v.shape[2])
*
* @caution: The returned tensor is a shallow copy of `v`!
*/
template <typename T = float>
Ort::Value Slice(const Ort::Value *v, int32_t dim0, int32_t dim1_start,
int32_t dim1_end);
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_SLICE_H_
... ...