Fangjun Kuang
Committed by GitHub

Support Agglomerative clustering. (#1384)

We use the open-source implementation from
https://github.com/cdalitz/hclust-cpp
... ... @@ -40,6 +40,7 @@ option(SHERPA_ONNX_ENABLE_WASM_VAD_ASR "Whether to enable WASM for VAD+ASR" OFF)
option(SHERPA_ONNX_ENABLE_WASM_NODEJS "Whether to enable WASM for NodeJS" OFF)
option(SHERPA_ONNX_ENABLE_BINARY "Whether to build binaries" ON)
option(SHERPA_ONNX_ENABLE_TTS "Whether to build TTS related code" ON)
option(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION "Whether to build speaker diarization related code" ON)
option(SHERPA_ONNX_LINK_LIBSTDCPP_STATICALLY "True to link libstdc++ statically. Used only when BUILD_SHARED_LIBS is OFF on Linux" ON)
option(SHERPA_ONNX_USE_PRE_INSTALLED_ONNXRUNTIME_IF_AVAILABLE "True to use pre-installed onnxruntime if available" ON)
option(SHERPA_ONNX_ENABLE_SANITIZER "Whether to enable ubsan and asan" OFF)
... ... @@ -142,6 +143,7 @@ message(STATUS "SHERPA_ONNX_ENABLE_WASM_VAD_ASR ${SHERPA_ONNX_ENABLE_WASM_VAD_AS
message(STATUS "SHERPA_ONNX_ENABLE_WASM_NODEJS ${SHERPA_ONNX_ENABLE_WASM_NODEJS}")
message(STATUS "SHERPA_ONNX_ENABLE_BINARY ${SHERPA_ONNX_ENABLE_BINARY}")
message(STATUS "SHERPA_ONNX_ENABLE_TTS ${SHERPA_ONNX_ENABLE_TTS}")
message(STATUS "SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION ${SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION}")
message(STATUS "SHERPA_ONNX_LINK_LIBSTDCPP_STATICALLY ${SHERPA_ONNX_LINK_LIBSTDCPP_STATICALLY}")
message(STATUS "SHERPA_ONNX_USE_PRE_INSTALLED_ONNXRUNTIME_IF_AVAILABLE ${SHERPA_ONNX_USE_PRE_INSTALLED_ONNXRUNTIME_IF_AVAILABLE}")
message(STATUS "SHERPA_ONNX_ENABLE_SANITIZER: ${SHERPA_ONNX_ENABLE_SANITIZER}")
... ... @@ -341,6 +343,10 @@ if(SHERPA_ONNX_ENABLE_TTS)
include(cppjieba) # For Chinese TTS. It is a header-only C++ library
endif()
if(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION)
include(hclust-cpp)
endif()
# if(NOT MSVC AND CMAKE_BUILD_TYPE STREQUAL Debug AND (CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang"))
if(SHERPA_ONNX_ENABLE_SANITIZER)
message(WARNING "enable ubsan and asan")
... ...
function(download_hclust_cpp)
include(FetchContent)
# The latest commit as of 2024.09.29
set(hclust_cpp_URL "https://github.com/csukuangfj/hclust-cpp/archive/refs/tags/2024-09-29.tar.gz")
set(hclust_cpp_HASH "SHA256=abab51448a3cb54272aae07522970306e0b2cc6479d59d7b19e7aee4d6cedd33")
# If you don't have access to the Internet,
# please pre-download hclust-cpp
set(possible_file_locations
$ENV{HOME}/Downloads/hclust-cpp-2024-09-29.tar.gz
${CMAKE_SOURCE_DIR}/hclust-cpp-2024-09-29.tar.gz
${CMAKE_BINARY_DIR}/hclust-cpp-2024-09-29.tar.gz
/tmp/hclust-cpp-2024-09-29.tar.gz
/star-fj/fangjun/download/github/hclust-cpp-2024-09-29.tar.gz
)
foreach(f IN LISTS possible_file_locations)
if(EXISTS ${f})
set(hclust_cpp_URL "${f}")
file(TO_CMAKE_PATH "${hclust_cpp_URL}" hclust_cpp_URL)
message(STATUS "Found local downloaded hclust_cpp: ${hclust_cpp_URL}")
break()
endif()
endforeach()
FetchContent_Declare(hclust_cpp
URL
${hclust_cpp_URL}
${hclust_cpp_URL2}
URL_HASH ${hclust_cpp_HASH}
)
FetchContent_GetProperties(hclust_cpp)
if(NOT hclust_cpp_POPULATED)
message(STATUS "Downloading hclust_cpp from ${hclust_cpp_URL}")
FetchContent_Populate(hclust_cpp)
endif()
message(STATUS "hclust_cpp is downloaded to ${hclust_cpp_SOURCE_DIR}")
message(STATUS "hclust_cpp's binary dir is ${hclust_cpp_BINARY_DIR}")
include_directories(${hclust_cpp_SOURCE_DIR})
endfunction()
download_hclust_cpp()
... ...
... ... @@ -160,6 +160,13 @@ if(SHERPA_ONNX_ENABLE_TTS)
)
endif()
if(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION)
list(APPEND sources
fast-clustering-config.cc
fast-clustering.cc
)
endif()
if(SHERPA_ONNX_ENABLE_CHECK)
list(APPEND sources log.cc)
endif()
... ... @@ -523,6 +530,12 @@ if(SHERPA_ONNX_ENABLE_TESTS)
)
endif()
if(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION)
list(APPEND sherpa_onnx_test_srcs
fast-clustering-test.cc
)
endif()
list(APPEND sherpa_onnx_test_srcs
speaker-embedding-manager-test.cc
)
... ...
// sherpa-onnx/csrc/fast-clustering-config.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/fast-clustering-config.h"
#include <sstream>
#include <string>
#include "sherpa-onnx/csrc/macros.h"
namespace sherpa_onnx {
std::string FastClusteringConfig::ToString() const {
std::ostringstream os;
os << "FastClusteringConfig(";
os << "num_clusters=" << num_clusters << ", ";
os << "threshold=" << threshold << ")";
return os.str();
}
void FastClusteringConfig::Register(ParseOptions *po) {
std::string prefix = "ctc";
ParseOptions p(prefix, po);
p.Register("num-clusters", &num_clusters,
"Number of cluster. If greater than 0, then --cluster-thresold is "
"ignored");
p.Register("cluster-threshold", &threshold,
"If --num-clusters is not specified, then it specifies the "
"distance threshold for clustering.");
}
bool FastClusteringConfig::Validate() const {
if (num_clusters < 1 && threshold < 0) {
SHERPA_ONNX_LOGE("Please provide either num_clusters or threshold");
return false;
}
return true;
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/csrc/fast-clustering-config.h
//
// Copyright (c) 2024 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_FAST_CLUSTERING_CONFIG_H_
#define SHERPA_ONNX_CSRC_FAST_CLUSTERING_CONFIG_H_
#include <string>
#include "sherpa-onnx/csrc/parse-options.h"
namespace sherpa_onnx {
struct FastClusteringConfig {
// If greater than 0, then threshold is ignored
int32_t num_clusters = -1;
// distance threshold
float threshold = 0.5;
std::string ToString() const;
void Register(ParseOptions *po);
bool Validate() const;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_FAST_CLUSTERING_CONFIG_H_
... ...
// sherpa-onnx/csrc/fast-clustering-test.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/fast-clustering.h"
#include <vector>
#include "gtest/gtest.h"
namespace sherpa_onnx {
TEST(FastClustering, TestTwoClusters) {
std::vector<float> features = {
// point 0
0.1,
0.1,
// point 2
0.4,
-0.5,
// point 3
0.6,
-0.7,
// point 1
0.2,
0.3,
};
FastClusteringConfig config;
config.num_clusters = 2;
FastClustering clustering(config);
auto labels = clustering.Cluster(features.data(), 4, 2);
int32_t k = 0;
for (auto i : labels) {
std::cout << "point " << k << ": label " << i << "\n";
++k;
}
}
TEST(FastClustering, TestClusteringWithThreshold) {
std::vector<float> features = {
// point 0
0.1,
0.1,
// point 2
0.4,
-0.5,
// point 3
0.6,
-0.7,
// point 1
0.2,
0.3,
};
FastClusteringConfig config;
config.threshold = 0.5;
FastClustering clustering(config);
auto labels = clustering.Cluster(features.data(), 4, 2);
int32_t k = 0;
for (auto i : labels) {
std::cout << "point " << k << ": label " << i << "\n";
++k;
}
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/csrc/fast-clustering.cc
//
// Copyright (c) 2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/fast-clustering.h"
#include <vector>
#include "Eigen/Dense"
#include "fastcluster-all-in-one.h" // NOLINT
namespace sherpa_onnx {
class FastClustering::Impl {
public:
explicit Impl(const FastClusteringConfig &config) : config_(config) {}
std::vector<int32_t> Cluster(float *features, int32_t num_rows,
int32_t num_cols) {
if (num_rows <= 0) {
return {};
}
if (num_rows == 1) {
return {0};
}
Eigen::Map<
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
m(features, num_rows, num_cols);
m.rowwise().normalize();
std::vector<double> distance((num_rows * (num_rows - 1)) / 2);
int32_t k = 0;
for (int32_t i = 0; i != num_rows; ++i) {
auto v = m.row(i);
for (int32_t j = i + 1; j != num_rows; ++j) {
double cosine_similarity = v.dot(m.row(j));
double consine_dissimilarity = 1 - cosine_similarity;
if (consine_dissimilarity < 0) {
consine_dissimilarity = 0;
}
distance[k] = consine_dissimilarity;
++k;
}
}
std::vector<int32_t> merge(2 * (num_rows - 1));
std::vector<double> height(num_rows - 1);
fastclustercpp::hclust_fast(num_rows, distance.data(),
fastclustercpp::HCLUST_METHOD_SINGLE,
merge.data(), height.data());
std::vector<int32_t> labels(num_rows);
if (config_.num_clusters > 0) {
fastclustercpp::cutree_k(num_rows, merge.data(), config_.num_clusters,
labels.data());
} else {
fastclustercpp::cutree_cdist(num_rows, merge.data(), height.data(),
config_.threshold, labels.data());
}
return labels;
}
private:
FastClusteringConfig config_;
};
FastClustering::FastClustering(const FastClusteringConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
FastClustering::~FastClustering() = default;
std::vector<int32_t> FastClustering::Cluster(float *features, int32_t num_rows,
int32_t num_cols) {
return impl_->Cluster(features, num_rows, num_cols);
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/csrc/fast-clustering.h
//
// Copyright (c) 2024 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_FAST_CLUSTERING_H_
#define SHERPA_ONNX_CSRC_FAST_CLUSTERING_H_
#include <memory>
#include <vector>
#include "sherpa-onnx/csrc/fast-clustering-config.h"
namespace sherpa_onnx {
class FastClustering {
public:
explicit FastClustering(const FastClusteringConfig &config);
~FastClustering();
/**
* @param features Pointer to a 2-D feature matrix in row major. Each row
* is a feature frame. It is changed in-place. We will
* convert each feature frame to a normalized vector.
* That is, the L2-norm of each vector will be equal to 1.
* It uses cosine dissimilarity,
* which is 1 - (cosine similarity)
* @param num_rows Number of feature frames
* @param num-cols The feature dimension.
*
* @return Return a vector of size num_rows. ans[i] contains the label
* for the i-th feature frame, i.e., the i-th row of the feature
* matrix.
*/
std::vector<int32_t> Cluster(float *features, int32_t num_rows,
int32_t num_cols);
private:
class Impl;
std::unique_ptr<Impl> impl_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_FAST_CLUSTERING_H_
... ...
... ... @@ -4,8 +4,6 @@
#include "sherpa-onnx/csrc/offline-stream.h"
#include <math.h>
#include <algorithm>
#include <cassert>
#include <cmath>
... ...
... ... @@ -8,16 +8,16 @@
namespace sherpa_onnx {
struct OnlineCNNBiLSTMModelMetaData {
int32_t comma_id;
int32_t period_id;
int32_t quest_id;
int32_t comma_id = -1;
int32_t period_id = -1;
int32_t quest_id = -1;
int32_t upper_id;
int32_t cap_id;
int32_t mix_case_id;
int32_t upper_id = -1;
int32_t cap_id = -1;
int32_t mix_case_id = -1;
int32_t num_cases;
int32_t num_punctuations;
int32_t num_cases = -1;
int32_t num_punctuations = -1;
};
} // namespace sherpa_onnx
... ...
... ... @@ -169,7 +169,7 @@ static std::vector<int64_t> CoquiPhonemesToIds(
return ans;
}
void InitEspeak(const std::string &data_dir) {
static void InitEspeak(const std::string &data_dir) {
static std::once_flag init_flag;
std::call_once(init_flag, [data_dir]() {
int32_t result =
... ...
... ... @@ -41,7 +41,7 @@
namespace sherpa_onnx {
template <class I>
I Gcd(I m, I n) {
static I Gcd(I m, I n) {
// this function is copied from kaldi/src/base/kaldi-math.h
if (m == 0 || n == 0) {
if (m == 0 && n == 0) { // gcd not defined, as all integers are divisors.
... ... @@ -65,7 +65,7 @@ I Gcd(I m, I n) {
/// Returns the least common multiple of two integers. Will
/// crash unless the inputs are positive.
template <class I>
I Lcm(I m, I n) {
static I Lcm(I m, I n) {
// This function is copied from kaldi/src/base/kaldi-math.h
assert(m > 0 && n > 0);
I gcd = Gcd(m, n);
... ...