Karel Vesely
Committed by GitHub

online-transducer: reset the encoder toghter with 2 previous output symbols (non-blank) (#2129)

* online-transducer: reset the encoder toghter with 2 previous output symbols (non-blank)

- added `reset_encoder` boolean member into the OnlineRecognizerConfig class
- by default the encoder is not reset

* pybind11, adding empty symbols for disabled modules (tts, diarization)

* reset_encoder, add default value (false) [pybind11]
... ... @@ -382,14 +382,13 @@ class OnlineRecognizerTransducerImpl : public OnlineRecognizerImpl {
}
}
// reset encoder states
// s->SetStates(model_->GetEncoderInitStates());
auto r = decoder_->GetEmptyResult();
auto last_result = s->GetResult();
// if last result is not empty, then
// truncate all last hyps and save as the context for next result
if (static_cast<int32_t>(last_result.tokens.size()) > context_size) {
// if last result is not empty, then
// truncate all last hyps and save as the 'ys' context for next result
// (the encoder state buffers are kept)
for (const auto &it : last_result.hyps) {
auto h = it.second;
r.hyps.Add({std::vector<int64_t>(h.ys.end() - context_size,
... ... @@ -399,6 +398,11 @@ class OnlineRecognizerTransducerImpl : public OnlineRecognizerImpl {
r.tokens = std::vector<int64_t> (last_result.tokens.end() - context_size,
last_result.tokens.end());
} else {
if(config_.reset_encoder) {
// reset encoder states, use blanks as 'ys' context
s->SetStates(model_->GetEncoderInitStates());
}
}
// but reset all contextual biasing graph states to root
... ...
... ... @@ -121,6 +121,10 @@ void OnlineRecognizerConfig::Register(ParseOptions *po) {
"rule-fars", &rule_fars,
"If not empty, it specifies fst archives for inverse text normalization. "
"If there are multiple archives, they are separated by a comma.");
po->Register("reset-encoder", &reset_encoder,
"True to reset encoder_state on an endpoint after empty segment."
"Done in `Reset()` method, after an endpoint was detected.");
}
bool OnlineRecognizerConfig::Validate() const {
... ... @@ -198,7 +202,8 @@ std::string OnlineRecognizerConfig::ToString() const {
os << "blank_penalty=" << blank_penalty << ", ";
os << "temperature_scale=" << temperature_scale << ", ";
os << "rule_fsts=\"" << rule_fsts << "\", ";
os << "rule_fars=\"" << rule_fars << "\")";
os << "rule_fars=\"" << rule_fars << "\", ";
os << "reset_encoder=\"" << (reset_encoder ? "True" : "False") << "\")";
return os.str();
}
... ...
... ... @@ -79,6 +79,7 @@ struct OnlineRecognizerConfig {
OnlineLMConfig lm_config;
EndpointConfig endpoint_config;
OnlineCtcFstDecoderConfig ctc_fst_decoder_config;
bool enable_endpoint = true;
std::string decoding_method = "greedy_search";
... ... @@ -101,6 +102,11 @@ struct OnlineRecognizerConfig {
// If there are multiple FST archives, they are applied from left to right.
std::string rule_fars;
// True to reset encoder_state on an endpoint after empty segment.
// Done in `Reset()` method, after an endpoint was detected,
// currently only in `OnlineRecognizerTransducerImpl`.
bool reset_encoder = false;
/// used only for modified_beam_search, if hotwords_buf is non-empty,
/// the hotwords will be loaded from the buffered string instead of from the
/// "hotwords_file"
... ... @@ -116,7 +122,8 @@ struct OnlineRecognizerConfig {
bool enable_endpoint, const std::string &decoding_method,
int32_t max_active_paths, const std::string &hotwords_file,
float hotwords_score, float blank_penalty, float temperature_scale,
const std::string &rule_fsts, const std::string &rule_fars)
const std::string &rule_fsts, const std::string &rule_fars,
bool reset_encoder)
: feat_config(feat_config),
model_config(model_config),
lm_config(lm_config),
... ... @@ -130,7 +137,8 @@ struct OnlineRecognizerConfig {
blank_penalty(blank_penalty),
temperature_scale(temperature_scale),
rule_fsts(rule_fsts),
rule_fars(rule_fars) {}
rule_fars(rule_fars),
reset_encoder(reset_encoder) {}
void Register(ParseOptions *po);
bool Validate() const;
... ...
... ... @@ -58,7 +58,7 @@ static void PybindOnlineRecognizerConfig(py::module *m) {
const OnlineLMConfig &, const EndpointConfig &,
const OnlineCtcFstDecoderConfig &, bool,
const std::string &, int32_t, const std::string &, float,
float, float, const std::string &, const std::string &>(),
float, float, const std::string &, const std::string &, bool>(),
py::arg("feat_config"), py::arg("model_config"),
py::arg("lm_config") = OnlineLMConfig(),
py::arg("endpoint_config") = EndpointConfig(),
... ... @@ -67,7 +67,7 @@ static void PybindOnlineRecognizerConfig(py::module *m) {
py::arg("max_active_paths") = 4, py::arg("hotwords_file") = "",
py::arg("hotwords_score") = 0, py::arg("blank_penalty") = 0.0,
py::arg("temperature_scale") = 2.0, py::arg("rule_fsts") = "",
py::arg("rule_fars") = "")
py::arg("rule_fars") = "", py::arg("reset_encoder") = false)
.def_readwrite("feat_config", &PyClass::feat_config)
.def_readwrite("model_config", &PyClass::model_config)
.def_readwrite("lm_config", &PyClass::lm_config)
... ... @@ -82,6 +82,7 @@ static void PybindOnlineRecognizerConfig(py::module *m) {
.def_readwrite("temperature_scale", &PyClass::temperature_scale)
.def_readwrite("rule_fsts", &PyClass::rule_fsts)
.def_readwrite("rule_fars", &PyClass::rule_fars)
.def_readwrite("reset_encoder", &PyClass::reset_encoder)
.def("__str__", &PyClass::ToString);
}
... ...
... ... @@ -75,6 +75,15 @@ PYBIND11_MODULE(_sherpa_onnx, m) {
#if SHERPA_ONNX_ENABLE_TTS == 1
PybindOfflineTts(&m);
#else
/* Define "empty" TTS sybmbols */
m.attr("OfflineTtsKokoroModelConfig") = py::none();
m.attr("OfflineTtsMatchaModelConfig") = py::none();
m.attr("OfflineTtsModelConfig") = py::none();
m.attr("OfflineTtsVitsModelConfig") = py::none();
m.attr("GeneratedAudio") = py::none();
m.attr("OfflineTtsConfig") = py::none();
m.attr("OfflineTts") = py::none();
#endif
PybindSpeakerEmbeddingExtractor(&m);
... ... @@ -85,6 +94,16 @@ PYBIND11_MODULE(_sherpa_onnx, m) {
PybindFastClustering(&m);
PybindOfflineSpeakerDiarizationResult(&m);
PybindOfflineSpeakerDiarization(&m);
#else
/* Define "empty" diarization sybmbols */
m.attr("FastClusteringConfig") = py::none();
m.attr("FastClustering") = py::none();
m.attr("OfflineSpeakerDiarizationSegment") = py::none();
m.attr("OfflineSpeakerDiarizationResult") = py::none();
m.attr("OfflineSpeakerSegmentationPyannoteModelConfig") = py::none();
m.attr("OfflineSpeakerSegmentationModelConfig") = py::none();
m.attr("OfflineSpeakerDiarizationConfig") = py::none();
m.attr("OfflineSpeakerDiarization") = py::none();
#endif
PybindAlsa(&m);
... ...
... ... @@ -68,6 +68,7 @@ class OnlineRecognizer(object):
lm_scale: float = 0.1,
lm_shallow_fusion: bool = True,
temperature_scale: float = 2.0,
reset_encoder: bool = False,
debug: bool = False,
rule_fsts: str = "",
rule_fars: str = "",
... ... @@ -162,6 +163,10 @@ class OnlineRecognizer(object):
Temperature scaling for output symbol confidence estiamation.
It affects only confidence values, the decoding uses the original
logits without temperature.
reset_encoder:
True to reset `encoder_state` on an endpoint after empty segment.
Done in `Reset()` method, after an endpoint was detected,
currently only in `OnlineRecognizerTransducerImpl`.
model_type:
Online transducer model type. Valid values are: conformer, lstm,
zipformer, zipformer2. All other values lead to loading the model twice.
... ... @@ -305,6 +310,7 @@ class OnlineRecognizer(object):
temperature_scale=temperature_scale,
rule_fsts=rule_fsts,
rule_fars=rule_fars,
reset_encoder=reset_encoder,
)
self.recognizer = _Recognizer(recognizer_config)
... ...