Fangjun Kuang
Committed by GitHub

Export vocos to sherpa-onnx (#2012)

name: export-vocos-to-onnx
on:
push:
branches:
- export-vocos
workflow_dispatch:
concurrency:
group: export-vocos-to-onnx-${{ github.ref }}
cancel-in-progress: true
jobs:
export-vocos-to-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: export vocos ${{ matrix.version }}
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ["3.10"]
steps:
- uses: actions/checkout@v4
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install Python dependencies
shell: bash
run: |
pip install "numpy<=1.26.4" onnx==1.16.0 onnxruntime==1.17.1 soundfile piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html kaldi_native_fbank
- name: Run
shell: bash
run: |
cd scripts/vocos
./run.sh
ls -lh
- name: Collect results
shell: bash
run: |
cp -v scripts/vocos/vocos-22khz-univ.onnx .
cp -v scripts/vocos/*.wav .
- uses: actions/upload-artifact@v4
with:
name: generated-waves
path: ./*.wav
- name: Publish to huggingface
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
with:
max_attempts: 20
timeout_seconds: 200
shell: bash
command: |
git config --global user.email "csukuangfj@gmail.com"
git config --global user.name "Fangjun Kuang"
rm -rf huggingface
export GIT_LFS_SKIP_SMUDGE=1
export GIT_CLONE_PROTECTION_ACTIVE=false
git clone https://csukuangfj:$HF_TOKEN@huggingface.co/k2-fsa/sherpa-onnx-models huggingface
cd huggingface
git fetch
git pull
d=vocoder-models
mkdir -p $d
cp -a ../vocos-22khz-univ.onnx $d/
git lfs track "*.onnx"
git add .
ls -lh
git status
git commit -m "add models"
git push https://csukuangfj:$HF_TOKEN@huggingface.co/k2-fsa/sherpa-onnx-models main || true
- name: Release
if: github.repository_owner == 'csukuangfj'
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.onnx
overwrite: true
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: vocoder-models
- name: Release
if: github.repository_owner == 'k2-fsa'
uses: svenstaro/upload-release-action@v2
with:
file_glob: true
file: ./*.onnx
overwrite: true
tag: vocoder-models
... ...
# Introduction
This folder contains script to export the ONNX model from
https://huggingface.co/BSC-LT
to sherpa-onnx
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import argparse
import onnx
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--in-model", type=str, required=True, help="input onnx model")
parser.add_argument(
"--out-model", type=str, required=True, help="output onnx model"
)
return parser.parse_args()
def main():
args = get_args()
print(args.in_model, args.out_model)
model = onnx.load(args.in_model)
meta_data = {
"model_type": "vocos",
"model_filename": "mel_spec_22khz_univ.onnx",
"sample_rate": 22050,
"version": 1,
"model_author": "BSC-LT",
"maintainer": "k2-fsa",
"n_fft": 1024,
"hop_length": 256,
"win_length": 1024,
"window_type": "hann",
"center": 1,
"pad_mode": "reflect",
"normalized": 0,
"url1": "https://huggingface.co/BSC-LT/vocos-mel-22khz",
"url2": "https://github.com/gemelo-ai/vocos",
}
print(model.metadata_props)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
print("--------------------")
print(model.metadata_props)
onnx.save(model, args.out_model)
print(f"Saved to {args.out_model}")
if __name__ == "__main__":
main()
... ...
#!/usr/bin/env bash
set -ex
if [ ! -f mel_spec_22khz_univ.onnx ]; then
curl -SL -O https://huggingface.co/BSC-LT/vocos-mel-22khz/resolve/main/mel_spec_22khz_univ.onnx
fi
if [ ! -f ./vocos-22khz-univ.onnx ]; then
python3 ./add_meta_data.py --in-model ./mel_spec_22khz_univ.onnx --out-model ./vocos-22khz-univ.onnx
fi
# The following is for testing
if [ ! -f ./matcha-icefall-en_US-ljspeech/tokens.txt ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/matcha-icefall-en_US-ljspeech.tar.bz2
tar xf matcha-icefall-en_US-ljspeech.tar.bz2
rm matcha-icefall-en_US-ljspeech.tar.bz2
fi
if [ ! -f ./hifigan_v2.onnx ]; then
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/vocoder-models/hifigan_v2.onnx
fi
python3 ./test.py
ls -lh
... ...
#!/usr/bin/env python3
# Copyright 2025 Xiaomi Corp. (authors: Fangjun Kuang)
import datetime as dt
import kaldi_native_fbank as knf
import numpy as np
import onnxruntime as ort
import soundfile as sf
try:
from piper_phonemize import phonemize_espeak
except Exception as ex:
raise RuntimeError(
f"{ex}\nPlease run\n"
"pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html"
)
class OnnxVocosModel:
def __init__(
self,
filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
print("----------vocos----------")
for i in self.model.get_inputs():
print(i)
print("-----")
for i in self.model.get_outputs():
print(i)
print()
def __call__(self, x: np.ndarray):
"""
Args:
x: (N, feat_dim, num_frames)
Returns:
mag: (N, n_fft/2+1, num_frames)
x: (N, n_fft/2+1, num_frames)
y: (N, n_fft/2+1, num_frames)
The complex spectrum is mag * (x + j*y)
"""
assert x.ndim == 3, x.shape
assert x.shape[0] == 1, x.shape
mag, x, y = self.model.run(
[
self.model.get_outputs()[0].name,
self.model.get_outputs()[1].name,
self.model.get_outputs()[2].name,
],
{
self.model.get_inputs()[0].name: x,
},
)
return mag, x, y
class OnnxHifiGANModel:
def __init__(
self,
filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
print("----------hifigan----------")
for i in self.model.get_inputs():
print(i)
print("-----")
for i in self.model.get_outputs():
print(i)
print()
def __call__(self, x: np.ndarray):
"""
Args:
x: (N, feat_dim, num_frames)
Returns:
audio: (N, num_samples)
"""
assert x.ndim == 3, x.shape
assert x.shape[0] == 1, x.shape
audio = self.model.run(
[self.model.get_outputs()[0].name],
{
self.model.get_inputs()[0].name: x,
},
)[0]
# audio: (batch_size, num_samples)
return audio
def load_tokens(filename):
token2id = dict()
with open(filename, encoding="utf-8") as f:
for line in f:
fields = line.strip().split()
if len(fields) == 1:
t = " "
idx = int(fields[0])
else:
t, idx = line.strip().split()
token2id[t] = int(idx)
return token2id
class OnnxModel:
def __init__(
self,
filename: str,
tokens: str,
):
self.token2id = load_tokens(tokens)
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
print(f"{self.model.get_modelmeta().custom_metadata_map}")
metadata = self.model.get_modelmeta().custom_metadata_map
self.sample_rate = int(metadata["sample_rate"])
print("----------matcha----------")
for i in self.model.get_inputs():
print(i)
print("-----")
for i in self.model.get_outputs():
print(i)
print()
def __call__(self, x: np.ndim):
"""
Args:
"""
assert x.ndim == 2, x.shape
assert x.shape[0] == 1, x.shape
x_lengths = np.array([x.shape[1]], dtype=np.int64)
noise_scale = np.array([1.0], dtype=np.float32)
length_scale = np.array([1.0], dtype=np.float32)
mel = self.model.run(
[self.model.get_outputs()[0].name],
{
self.model.get_inputs()[0].name: x,
self.model.get_inputs()[1].name: x_lengths,
self.model.get_inputs()[2].name: noise_scale,
self.model.get_inputs()[3].name: length_scale,
},
)[0]
# mel: (batch_size, feat_dim, num_frames)
return mel
def main():
am = OnnxModel(
filename="./matcha-icefall-en_US-ljspeech/model-steps-3.onnx",
tokens="./matcha-icefall-en_US-ljspeech/tokens.txt",
)
vocoder = OnnxHifiGANModel("./hifigan_v2.onnx")
vocos = OnnxVocosModel("./mel_spec_22khz_univ.onnx")
text = "Today as always, men fall into two groups: slaves and free men. Whoever does not have two-thirds of his day for himself, is a slave, whatever he may be: a statesman, a businessman, an official, or a scholar."
tokens_list = phonemize_espeak(text, "en-us")
print(tokens_list)
tokens = []
for t in tokens_list:
tokens.extend(t)
token_ids = []
for t in tokens:
if t not in am.token2id:
print(f"Skip OOV '{t}'")
continue
token_ids.append(am.token2id[t])
token_ids2 = [am.token2id["_"]] * (len(token_ids) * 2 + 1)
token_ids2[1::2] = token_ids
token_ids = token_ids2
x = np.array([token_ids], dtype=np.int64)
mel_start_t = dt.datetime.now()
mel = am(x)
mel_end_t = dt.datetime.now()
print("mel", mel.shape)
# mel:(1, 80, 78)
vocos_start_t = dt.datetime.now()
mag, x, y = vocos(mel)
stft_result = knf.StftResult(
real=(mag * x)[0].transpose().reshape(-1).tolist(),
imag=(mag * y)[0].transpose().reshape(-1).tolist(),
num_frames=mag.shape[2],
)
config = knf.StftConfig(
n_fft=1024,
hop_length=256,
win_length=1024,
window_type="hann",
center=True,
pad_mode="reflect",
normalized=False,
)
istft = knf.IStft(config)
audio_vocos = istft(stft_result)
vocos_end_t = dt.datetime.now()
audio_vocos = np.array(audio_vocos)
# audio = audio / 2
print("vocos max/min", np.max(audio_vocos), np.min(audio_vocos))
sf.write("vocos.wav", audio_vocos, am.sample_rate, "PCM_16")
hifigan_start_t = dt.datetime.now()
audio_hifigan = vocoder(mel)
hifigan_end_t = dt.datetime.now()
audio_hifigan = audio_hifigan.squeeze()
print("hifigan max/min", np.max(audio_hifigan), np.min(audio_hifigan))
sample_rate = am.sample_rate
sf.write("hifigan-v2.wav", audio_hifigan, sample_rate, "PCM_16")
am_t = (mel_end_t - mel_start_t).total_seconds()
vocos_t = (vocos_end_t - vocos_start_t).total_seconds()
hifigan_t = (hifigan_end_t - hifigan_start_t).total_seconds()
mean_audio_duration = (
(audio_vocos.shape[-1] + audio_hifigan.shape[-1]) / 2 / sample_rate
)
rtf_am = am_t / mean_audio_duration
rtf_vocos = vocos_t * sample_rate / audio_vocos.shape[-1]
rtf_hifigan = hifigan_t * sample_rate / audio_hifigan.shape[-1]
print(
"Audio duration for vocos {:.3f} s".format(audio_vocos.shape[-1] / sample_rate)
)
print(
"Audio duration for hifigan {:.3f} s".format(
audio_hifigan.shape[-1] / sample_rate
)
)
print("Mean audio duration: {:.3f} s".format(mean_audio_duration))
print("RTF for acoustic model {:.3f}".format(rtf_am))
print("RTF for vocos {:.3f}".format(rtf_vocos))
print("RTF for hifigan {:.3f}".format(rtf_hifigan))
if __name__ == "__main__":
main()
... ...