Fangjun Kuang
Committed by GitHub

Support silero_vad version 5 (#1064)

... ... @@ -8,7 +8,7 @@ project(sherpa-onnx)
# ./nodejs-addon-examples
# ./dart-api-examples/
# ./sherpa-onnx/flutter/CHANGELOG.md
set(SHERPA_ONNX_VERSION "1.10.5")
set(SHERPA_ONNX_VERSION "1.10.6")
# Disable warning about
#
... ...
{
"dependencies": {
"sherpa-onnx-node": "^1.10.3"
"sherpa-onnx-node": "^1.10.6"
}
}
... ...
... ... @@ -61,25 +61,11 @@ class SileroVadModel::Impl {
#endif
void Reset() {
// 2 - number of LSTM layer
// 1 - batch size
// 64 - hidden dim
std::array<int64_t, 3> shape{2, 1, 64};
Ort::Value h =
Ort::Value::CreateTensor<float>(allocator_, shape.data(), shape.size());
Ort::Value c =
Ort::Value::CreateTensor<float>(allocator_, shape.data(), shape.size());
Fill<float>(&h, 0);
Fill<float>(&c, 0);
states_.clear();
states_.reserve(2);
states_.push_back(std::move(h));
states_.push_back(std::move(c));
if (is_v5_) {
ResetV5();
} else {
ResetV4();
}
triggered_ = false;
current_sample_ = 0;
... ... @@ -94,31 +80,7 @@ class SileroVadModel::Impl {
exit(-1);
}
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> x_shape = {1, n};
Ort::Value x =
Ort::Value::CreateTensor(memory_info, const_cast<float *>(samples), n,
x_shape.data(), x_shape.size());
int64_t sr_shape = 1;
Ort::Value sr =
Ort::Value::CreateTensor(memory_info, &sample_rate_, 1, &sr_shape, 1);
std::array<Ort::Value, 4> inputs = {std::move(x), std::move(sr),
std::move(states_[0]),
std::move(states_[1])};
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
states_[0] = std::move(out[1]);
states_[1] = std::move(out[2]);
float prob = out[0].GetTensorData<float>()[0];
float prob = Run(samples, n);
float threshold = config_.silero_vad.threshold;
... ... @@ -186,6 +148,8 @@ class SileroVadModel::Impl {
int32_t WindowSize() const { return config_.silero_vad.window_size; }
int32_t WindowShift() const { return WindowSize() - window_shift_; }
int32_t MinSilenceDurationSamples() const { return min_silence_samples_; }
int32_t MinSpeechDurationSamples() const { return min_speech_samples_; }
... ... @@ -205,12 +169,76 @@ class SileroVadModel::Impl {
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
if (input_names_.size() == 4 && output_names_.size() == 3) {
is_v5_ = false;
} else if (input_names_.size() == 3 && output_names_.size() == 2) {
is_v5_ = true;
// 64 for 16kHz
// 32 for 8kHz
window_shift_ = 64;
if (WindowSize() != 512) {
SHERPA_ONNX_LOGE(
"For silero_vad v5, we require window_size to be 512 for 16kHz");
exit(-1);
}
} else {
SHERPA_ONNX_LOGE("Unsupported silero vad model");
exit(-1);
}
Check();
Reset();
}
void Check() {
void ResetV5() {
// 2 - number of LSTM layer
// 1 - batch size
// 128 - hidden dim
std::array<int64_t, 3> shape{2, 1, 128};
Ort::Value s =
Ort::Value::CreateTensor<float>(allocator_, shape.data(), shape.size());
Fill<float>(&s, 0);
states_.clear();
states_.push_back(std::move(s));
}
void ResetV4() {
// 2 - number of LSTM layer
// 1 - batch size
// 64 - hidden dim
std::array<int64_t, 3> shape{2, 1, 64};
Ort::Value h =
Ort::Value::CreateTensor<float>(allocator_, shape.data(), shape.size());
Ort::Value c =
Ort::Value::CreateTensor<float>(allocator_, shape.data(), shape.size());
Fill<float>(&h, 0);
Fill<float>(&c, 0);
states_.clear();
states_.reserve(2);
states_.push_back(std::move(h));
states_.push_back(std::move(c));
}
void Check() const {
if (is_v5_) {
CheckV5();
} else {
CheckV4();
}
}
void CheckV4() const {
if (input_names_.size() != 4) {
SHERPA_ONNX_LOGE("Expect 4 inputs. Given: %d",
static_cast<int32_t>(input_names_.size()));
... ... @@ -262,6 +290,114 @@ class SileroVadModel::Impl {
}
}
void CheckV5() const {
if (input_names_.size() != 3) {
SHERPA_ONNX_LOGE("Expect 3 inputs. Given: %d",
static_cast<int32_t>(input_names_.size()));
exit(-1);
}
if (input_names_[0] != "input") {
SHERPA_ONNX_LOGE("Input[0]: %s. Expected: input",
input_names_[0].c_str());
exit(-1);
}
if (input_names_[1] != "state") {
SHERPA_ONNX_LOGE("Input[1]: %s. Expected: state",
input_names_[1].c_str());
exit(-1);
}
if (input_names_[2] != "sr") {
SHERPA_ONNX_LOGE("Input[2]: %s. Expected: sr", input_names_[2].c_str());
exit(-1);
}
// Now for outputs
if (output_names_.size() != 2) {
SHERPA_ONNX_LOGE("Expect 2 outputs. Given: %d",
static_cast<int32_t>(output_names_.size()));
exit(-1);
}
if (output_names_[0] != "output") {
SHERPA_ONNX_LOGE("Output[0]: %s. Expected: output",
output_names_[0].c_str());
exit(-1);
}
if (output_names_[1] != "stateN") {
SHERPA_ONNX_LOGE("Output[1]: %s. Expected: stateN",
output_names_[1].c_str());
exit(-1);
}
}
float Run(const float *samples, int32_t n) {
if (is_v5_) {
return RunV5(samples, n);
} else {
return RunV4(samples, n);
}
}
float RunV5(const float *samples, int32_t n) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> x_shape = {1, n};
Ort::Value x =
Ort::Value::CreateTensor(memory_info, const_cast<float *>(samples), n,
x_shape.data(), x_shape.size());
int64_t sr_shape = 1;
Ort::Value sr =
Ort::Value::CreateTensor(memory_info, &sample_rate_, 1, &sr_shape, 1);
std::array<Ort::Value, 3> inputs = {std::move(x), std::move(states_[0]),
std::move(sr)};
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
states_[0] = std::move(out[1]);
float prob = out[0].GetTensorData<float>()[0];
return prob;
}
float RunV4(const float *samples, int32_t n) {
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> x_shape = {1, n};
Ort::Value x =
Ort::Value::CreateTensor(memory_info, const_cast<float *>(samples), n,
x_shape.data(), x_shape.size());
int64_t sr_shape = 1;
Ort::Value sr =
Ort::Value::CreateTensor(memory_info, &sample_rate_, 1, &sr_shape, 1);
std::array<Ort::Value, 4> inputs = {std::move(x), std::move(sr),
std::move(states_[0]),
std::move(states_[1])};
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
states_[0] = std::move(out[1]);
states_[1] = std::move(out[2]);
float prob = out[0].GetTensorData<float>()[0];
return prob;
}
private:
VadModelConfig config_;
... ... @@ -286,6 +422,10 @@ class SileroVadModel::Impl {
int32_t current_sample_ = 0;
int32_t temp_start_ = 0;
int32_t temp_end_ = 0;
int32_t window_shift_ = 0;
bool is_v5_ = false;
};
SileroVadModel::SileroVadModel(const VadModelConfig &config)
... ... @@ -306,6 +446,8 @@ bool SileroVadModel::IsSpeech(const float *samples, int32_t n) {
int32_t SileroVadModel::WindowSize() const { return impl_->WindowSize(); }
int32_t SileroVadModel::WindowShift() const { return impl_->WindowShift(); }
int32_t SileroVadModel::MinSilenceDurationSamples() const {
return impl_->MinSilenceDurationSamples();
}
... ...
... ... @@ -39,6 +39,11 @@ class SileroVadModel : public VadModel {
int32_t WindowSize() const override;
// For silero vad V4, it is WindowSize().
// For silero vad V5, it is WindowSize()-64 for 16kHz and
// WindowSize()-32 for 8kHz
int32_t WindowShift() const override;
int32_t MinSilenceDurationSamples() const override;
int32_t MinSpeechDurationSamples() const override;
... ...
... ... @@ -40,6 +40,8 @@ class VadModel {
virtual int32_t WindowSize() const = 0;
virtual int32_t WindowShift() const = 0;
virtual int32_t MinSilenceDurationSamples() const = 0;
virtual int32_t MinSpeechDurationSamples() const = 0;
virtual void SetMinSilenceDuration(float s) = 0;
... ...
... ... @@ -38,16 +38,20 @@ class VoiceActivityDetector::Impl {
}
int32_t window_size = model_->WindowSize();
int32_t window_shift = model_->WindowShift();
// note n is usually window_size and there is no need to use
// an extra buffer here
last_.insert(last_.end(), samples, samples + n);
int32_t k = static_cast<int32_t>(last_.size()) / window_size;
// Note: For v4, window_shift == window_size
int32_t k =
(static_cast<int32_t>(last_.size()) - window_size) / window_shift + 1;
const float *p = last_.data();
bool is_speech = false;
for (int32_t i = 0; i != k; ++i, p += window_size) {
buffer_.Push(p, window_size);
for (int32_t i = 0; i != k; ++i, p += window_shift) {
buffer_.Push(p, window_shift);
// NOTE(fangjun): Please don't use a very large n.
bool this_window_is_speech = model_->IsSpeech(p, window_size);
is_speech = is_speech || this_window_is_speech;
... ...