lucaelin
Committed by GitHub

fix(canary): use dynamo export, single input_ids and avoid 0/1 specialization (#2348)

... ... @@ -197,12 +197,12 @@ def export_decoder(canary_model):
decoder = DecoderWrapper(canary_model)
decoder_input_ids = torch.tensor([[1, 0]], dtype=torch.int32)
decoder_mems_list_0 = torch.zeros(1, 1, 1024)
decoder_mems_list_1 = torch.zeros(1, 1, 1024)
decoder_mems_list_2 = torch.zeros(1, 1, 1024)
decoder_mems_list_3 = torch.zeros(1, 1, 1024)
decoder_mems_list_4 = torch.zeros(1, 1, 1024)
decoder_mems_list_5 = torch.zeros(1, 1, 1024)
decoder_mems_list_0 = torch.zeros(1, 10, 1024)
decoder_mems_list_1 = torch.zeros(1, 10, 1024)
decoder_mems_list_2 = torch.zeros(1, 10, 1024)
decoder_mems_list_3 = torch.zeros(1, 10, 1024)
decoder_mems_list_4 = torch.zeros(1, 10, 1024)
decoder_mems_list_5 = torch.zeros(1, 10, 1024)
enc_states = torch.zeros(1, 1000, 1024)
enc_mask = torch.ones(1, 1000).bool()
... ... @@ -221,7 +221,9 @@ def export_decoder(canary_model):
enc_mask,
),
"decoder.onnx",
opset_version=14,
dynamo=True,
opset_version=18,
external_data=False,
input_names=[
"decoder_input_ids",
"decoder_mems_list_0",
... ... @@ -272,13 +274,11 @@ def main():
export_decoder(canary_model)
for m in ["encoder", "decoder"]:
if m == "encoder":
# we don't quantize the decoder with int8 since the accuracy drops
quantize_dynamic(
model_input=f"./{m}.onnx",
model_output=f"./{m}.int8.onnx",
weight_type=QuantType.QUInt8,
)
quantize_dynamic(
model_input=f"./{m}.onnx",
model_output=f"./{m}.int8.onnx",
weight_type=QuantType.QUInt8,
)
export_onnx_fp16(f"{m}.onnx", f"{m}.fp16.onnx")
... ...
... ... @@ -263,16 +263,15 @@ def main():
decoder_input_ids.append(token2id["<|notimestamp|>"])
decoder_input_ids.append(token2id["<|nodiarize|>"])
decoder_input_ids.append(0)
decoder_mems_list = [np.zeros((1, 0, 1024), dtype=np.float32) for _ in range(6)]
logits, decoder_mems_list = model.run_decoder(
np.array([decoder_input_ids], dtype=np.int32),
decoder_mems_list,
enc_states,
enc_masks,
)
for pos, decoder_input_id in enumerate(decoder_input_ids):
logits, decoder_mems_list = model.run_decoder(
np.array([[decoder_input_id,pos]], dtype=np.int32),
decoder_mems_list,
enc_states,
enc_masks,
)
tokens = [logits.argmax()]
print("decoder_input_ids", decoder_input_ids)
eos = token2id["<|endoftext|>"]
... ...