PF Luo
Committed by GitHub

add modified beam search (#69)

... ... @@ -34,3 +34,4 @@ decode-file
tokens.txt
*.onnx
log.txt
tags
... ...
... ... @@ -5,11 +5,13 @@ set(sources
endpoint.cc
features.cc
file-utils.cc
hypothesis.cc
online-lstm-transducer-model.cc
online-recognizer.cc
online-stream.cc
online-transducer-greedy-search-decoder.cc
online-transducer-model-config.cc
online-transducer-modified-beam-search-decoder.cc
online-transducer-model.cc
online-zipformer-transducer-model.cc
onnx-utils.cc
... ...
/**
* Copyright (c) 2023 Xiaomi Corporation
*
*/
#include "sherpa-onnx/csrc/hypothesis.h"
#include <algorithm>
#include <utility>
namespace sherpa_onnx {
void Hypotheses::Add(Hypothesis hyp) {
auto key = hyp.Key();
auto it = hyps_dict_.find(key);
if (it == hyps_dict_.end()) {
hyps_dict_[key] = std::move(hyp);
} else {
it->second.log_prob = LogAdd<double>()(it->second.log_prob, hyp.log_prob);
}
}
Hypothesis Hypotheses::GetMostProbable(bool length_norm) const {
if (length_norm == false) {
return std::max_element(hyps_dict_.begin(), hyps_dict_.end(),
[](const auto &left, auto &right) -> bool {
return left.second.log_prob <
right.second.log_prob;
})
->second;
} else {
// for length_norm is true
return std::max_element(
hyps_dict_.begin(), hyps_dict_.end(),
[](const auto &left, const auto &right) -> bool {
return left.second.log_prob / left.second.ys.size() <
right.second.log_prob / right.second.ys.size();
})
->second;
}
}
std::vector<Hypothesis> Hypotheses::GetTopK(int32_t k, bool length_norm) const {
k = std::max(k, 1);
k = std::min(k, Size());
std::vector<Hypothesis> all_hyps = Vec();
if (length_norm == false) {
std::partial_sort(
all_hyps.begin(), all_hyps.begin() + k, all_hyps.end(),
[](const auto &a, const auto &b) { return a.log_prob > b.log_prob; });
} else {
// for length_norm is true
std::partial_sort(all_hyps.begin(), all_hyps.begin() + k, all_hyps.end(),
[](const auto &a, const auto &b) {
return a.log_prob / a.ys.size() >
b.log_prob / b.ys.size();
});
}
return {all_hyps.begin(), all_hyps.begin() + k};
}
} // namespace sherpa_onnx
... ...
/**
* Copyright (c) 2023 Xiaomi Corporation
*
*/
#ifndef SHERPA_ONNX_CSRC_HYPOTHESIS_H_
#define SHERPA_ONNX_CSRC_HYPOTHESIS_H_
#include <sstream>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/math.h"
namespace sherpa_onnx {
struct Hypothesis {
// The predicted tokens so far. Newly predicated tokens are appended.
std::vector<int32_t> ys;
// timestamps[i] contains the frame number after subsampling
// on which ys[i] is decoded.
std::vector<int32_t> timestamps;
// The total score of ys in log space.
double log_prob = 0;
int32_t num_trailing_blanks = 0;
Hypothesis() = default;
Hypothesis(const std::vector<int32_t> &ys, double log_prob)
: ys(ys), log_prob(log_prob) {}
// If two Hypotheses have the same `Key`, then they contain
// the same token sequence.
std::string Key() const {
// TODO(fangjun): Use a hash function?
std::ostringstream os;
std::string sep = "-";
for (auto i : ys) {
os << i << sep;
sep = "-";
}
return os.str();
}
// For debugging
std::string ToString() const {
std::ostringstream os;
os << "(" << Key() << ", " << log_prob << ")";
return os.str();
}
};
class Hypotheses {
public:
Hypotheses() = default;
explicit Hypotheses(std::vector<Hypothesis> hyps) {
for (auto &h : hyps) {
hyps_dict_[h.Key()] = std::move(h);
}
}
explicit Hypotheses(std::unordered_map<std::string, Hypothesis> hyps_dict)
: hyps_dict_(std::move(hyps_dict)) {}
// Add hyp to this object. If it already exists, its log_prob
// is updated with the given hyp using log-sum-exp.
void Add(Hypothesis hyp);
// Get the hyp that has the largest log_prob.
// If length_norm is true, hyp's log_prob is divided by
// len(hyp.ys) before comparison.
Hypothesis GetMostProbable(bool length_norm) const;
// Get the k hyps that have the largest log_prob.
// If length_norm is true, hyp's log_prob is divided by
// len(hyp.ys) before comparison.
std::vector<Hypothesis> GetTopK(int32_t k, bool length_norm) const;
int32_t Size() const { return hyps_dict_.size(); }
std::string ToString() const {
std::ostringstream os;
for (const auto &p : hyps_dict_) {
os << p.second.ToString() << "\n";
}
return os.str();
}
const auto begin() const { return hyps_dict_.begin(); }
const auto end() const { return hyps_dict_.end(); }
void Clear() { hyps_dict_.clear(); }
private:
// Return a list of hyps contained in this object.
std::vector<Hypothesis> Vec() const {
std::vector<Hypothesis> ans;
ans.reserve(hyps_dict_.size());
for (const auto &p : hyps_dict_) {
ans.push_back(p.second);
}
return ans;
}
private:
using Map = std ::unordered_map<std::string, Hypothesis>;
Map hyps_dict_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_HYPOTHESIS_H_
... ...
/**
* Copyright (c) 2022 Xiaomi Corporation (authors: Daniel Povey)
* Copyright (c) 2023 (Pingfeng Luo)
*
*/
// This file is copied from k2/csrc/utils.h
#ifndef SHERPA_ONNX_CSRC_MATH_H_
#define SHERPA_ONNX_CSRC_MATH_H_
#include <algorithm>
#include <cassert>
#include <cmath>
#include <numeric>
#include <vector>
namespace sherpa_onnx {
// logf(FLT_EPSILON)
#define SHERPA_ONNX_MIN_LOG_DIFF_FLOAT -15.9423847198486328125f
// log(DBL_EPSILON)
#define SHERPA_ONNX_MIN_LOG_DIFF_DOUBLE \
-36.0436533891171535515240975655615329742431640625
template <typename T>
struct LogAdd;
template <>
struct LogAdd<double> {
double operator()(double x, double y) const {
double diff;
if (x < y) {
diff = x - y;
x = y;
} else {
diff = y - x;
}
// diff is negative. x is now the larger one.
if (diff >= SHERPA_ONNX_MIN_LOG_DIFF_DOUBLE) {
double res;
res = x + log1p(exp(diff));
return res;
}
return x; // return the larger one.
}
};
template <>
struct LogAdd<float> {
float operator()(float x, float y) const {
float diff;
if (x < y) {
diff = x - y;
x = y;
} else {
diff = y - x;
}
// diff is negative. x is now the larger one.
if (diff >= SHERPA_ONNX_MIN_LOG_DIFF_DOUBLE) {
float res;
res = x + log1pf(expf(diff));
return res;
}
return x; // return the larger one.
}
};
template <class T>
void LogSoftmax(T *input, int32_t input_len) {
assert(input);
T m = *std::max_element(input, input + input_len);
T sum = 0.0;
for (int32_t i = 0; i < input_len; i++) {
sum += exp(input[i] - m);
}
T offset = m + log(sum);
for (int32_t i = 0; i < input_len; i++) {
input[i] -= offset;
}
}
template <class T>
std::vector<int32_t> TopkIndex(const T *vec, int32_t size, int32_t topk) {
std::vector<int32_t> vec_index(size);
std::iota(vec_index.begin(), vec_index.end(), 0);
std::sort(vec_index.begin(), vec_index.end(),
[vec](int32_t index_1, int32_t index_2) {
return vec[index_1] > vec[index_2];
});
int32_t k_num = std::min<int32_t>(size, topk);
std::vector<int32_t> index(vec_index.begin(), vec_index.begin() + k_num);
return index;
}
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_MATH_H_
... ...
... ... @@ -247,24 +247,6 @@ OnlineLstmTransducerModel::RunEncoder(Ort::Value features,
return {std::move(encoder_out[0]), std::move(next_states)};
}
Ort::Value OnlineLstmTransducerModel::BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results) {
int32_t batch_size = static_cast<int32_t>(results.size());
std::array<int64_t, 2> shape{batch_size, context_size_};
Ort::Value decoder_input =
Ort::Value::CreateTensor<int64_t>(allocator_, shape.data(), shape.size());
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
for (const auto &r : results) {
const int64_t *begin = r.tokens.data() + r.tokens.size() - context_size_;
const int64_t *end = r.tokens.data() + r.tokens.size();
std::copy(begin, end, p);
p += context_size_;
}
return decoder_input;
}
Ort::Value OnlineLstmTransducerModel::RunDecoder(Ort::Value decoder_input) {
auto decoder_out = decoder_sess_->Run(
{}, decoder_input_names_ptr_.data(), &decoder_input, 1,
... ...
... ... @@ -40,9 +40,6 @@ class OnlineLstmTransducerModel : public OnlineTransducerModel {
std::pair<Ort::Value, std::vector<Ort::Value>> RunEncoder(
Ort::Value features, std::vector<Ort::Value> states) override;
Ort::Value BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results) override;
Ort::Value RunDecoder(Ort::Value decoder_input) override;
Ort::Value RunJoiner(Ort::Value encoder_out, Ort::Value decoder_out) override;
... ...
// sherpa-onnx/csrc/online-recognizer.cc
//
// Copyright (c) 2023 Xiaomi Corporation
// Copyright (c) 2023 Pingfeng Luo
#include "sherpa-onnx/csrc/online-recognizer.h"
... ... @@ -16,6 +17,7 @@
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
#include "sherpa-onnx/csrc/online-transducer-modified-beam-search-decoder.h"
#include "sherpa-onnx/csrc/symbol-table.h"
namespace sherpa_onnx {
... ... @@ -39,6 +41,11 @@ void OnlineRecognizerConfig::Register(ParseOptions *po) {
po->Register("enable-endpoint", &enable_endpoint,
"True to enable endpoint detection. False to disable it.");
po->Register("max-active-paths", &max_active_paths,
"beam size used in modified beam search.");
po->Register("decoding-mothod", &decoding_method,
"decoding method,"
"now support greedy_search and modified_beam_search.");
}
bool OnlineRecognizerConfig::Validate() const {
... ... @@ -52,7 +59,9 @@ std::string OnlineRecognizerConfig::ToString() const {
os << "feat_config=" << feat_config.ToString() << ", ";
os << "model_config=" << model_config.ToString() << ", ";
os << "endpoint_config=" << endpoint_config.ToString() << ", ";
os << "enable_endpoint=" << (enable_endpoint ? "True" : "False") << ")";
os << "enable_endpoint=" << (enable_endpoint ? "True" : "False") << ",";
os << "max_active_paths=" << max_active_paths << ",";
os << "decoding_method=\"" << decoding_method << "\")";
return os.str();
}
... ... @@ -64,8 +73,17 @@ class OnlineRecognizer::Impl {
model_(OnlineTransducerModel::Create(config.model_config)),
sym_(config.model_config.tokens),
endpoint_(config_.endpoint_config) {
decoder_ =
std::make_unique<OnlineTransducerGreedySearchDecoder>(model_.get());
if (config.decoding_method == "modified_beam_search") {
decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
model_.get(), config_.max_active_paths);
} else if (config.decoding_method == "greedy_search") {
decoder_ =
std::make_unique<OnlineTransducerGreedySearchDecoder>(model_.get());
} else {
fprintf(stderr, "Unsupported decoding method: %s\n",
config.decoding_method.c_str());
exit(-1);
}
}
#if __ANDROID_API__ >= 9
... ... @@ -74,8 +92,17 @@ class OnlineRecognizer::Impl {
model_(OnlineTransducerModel::Create(mgr, config.model_config)),
sym_(mgr, config.model_config.tokens),
endpoint_(config_.endpoint_config) {
decoder_ =
std::make_unique<OnlineTransducerGreedySearchDecoder>(model_.get());
if (config.decoding_method == "modified_beam_search") {
decoder_ = std::make_unique<OnlineTransducerModifiedBeamSearchDecoder>(
model_.get(), config_.max_active_paths);
} else if (config.decoding_method == "greedy_search") {
decoder_ =
std::make_unique<OnlineTransducerGreedySearchDecoder>(model_.get());
} else {
fprintf(stderr, "Unsupported decoding method: %s\n",
config.decoding_method.c_str());
exit(-1);
}
}
#endif
... ...
... ... @@ -32,7 +32,11 @@ struct OnlineRecognizerConfig {
FeatureExtractorConfig feat_config;
OnlineTransducerModelConfig model_config;
EndpointConfig endpoint_config;
bool enable_endpoint;
bool enable_endpoint = true;
int32_t max_active_paths = 4;
std::string decoding_method = "modified_beam_search";
// now support modified_beam_search and greedy_search
OnlineRecognizerConfig() = default;
... ...
... ... @@ -8,6 +8,7 @@
#include <vector>
#include "onnxruntime_cxx_api.h" // NOLINT
#include "sherpa-onnx/csrc/hypothesis.h"
namespace sherpa_onnx {
... ... @@ -17,6 +18,9 @@ struct OnlineTransducerDecoderResult {
/// number of trailing blank frames decoded so far
int32_t num_trailing_blanks = 0;
// used only in modified beam_search
Hypotheses hyps;
};
class OnlineTransducerDecoder {
... ...
... ... @@ -4,8 +4,6 @@
#include "sherpa-onnx/csrc/online-transducer-greedy-search-decoder.h"
#include <assert.h>
#include <algorithm>
#include <utility>
#include <vector>
... ... @@ -15,39 +13,6 @@
namespace sherpa_onnx {
static Ort::Value GetFrame(OrtAllocator *allocator, Ort::Value *encoder_out,
int32_t t) {
std::vector<int64_t> encoder_out_shape =
encoder_out->GetTensorTypeAndShapeInfo().GetShape();
auto batch_size = encoder_out_shape[0];
auto num_frames = encoder_out_shape[1];
assert(t < num_frames);
auto encoder_out_dim = encoder_out_shape[2];
auto offset = num_frames * encoder_out_dim;
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> shape{batch_size, encoder_out_dim};
Ort::Value ans =
Ort::Value::CreateTensor<float>(allocator, shape.data(), shape.size());
float *dst = ans.GetTensorMutableData<float>();
const float *src = encoder_out->GetTensorData<float>();
for (int32_t i = 0; i != batch_size; ++i) {
std::copy(src + t * encoder_out_dim, src + (t + 1) * encoder_out_dim, dst);
src += offset;
dst += encoder_out_dim;
}
return ans;
}
OnlineTransducerDecoderResult
OnlineTransducerGreedySearchDecoder::GetEmptyResult() const {
int32_t context_size = model_->ContextSize();
... ... @@ -90,7 +55,8 @@ void OnlineTransducerGreedySearchDecoder::Decode(
Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
for (int32_t t = 0; t != num_frames; ++t) {
Ort::Value cur_encoder_out = GetFrame(model_->Allocator(), &encoder_out, t);
Ort::Value cur_encoder_out =
GetEncoderOutFrame(model_->Allocator(), &encoder_out, t);
Ort::Value logit = model_->RunJoiner(
std::move(cur_encoder_out), Clone(model_->Allocator(), &decoder_out));
... ...
// sherpa-onnx/csrc/online-transducer-model.cc
//
// Copyright (c) 2023 Xiaomi Corporation
// Copyright (c) 2023 Pingfeng Luo
#include "sherpa-onnx/csrc/online-transducer-model.h"
#if __ANDROID_API__ >= 9
... ... @@ -8,6 +9,7 @@
#include "android/asset_manager_jni.h"
#endif
#include <algorithm>
#include <memory>
#include <sstream>
#include <string>
... ... @@ -75,6 +77,40 @@ std::unique_ptr<OnlineTransducerModel> OnlineTransducerModel::Create(
return nullptr;
}
Ort::Value OnlineTransducerModel::BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results) {
int32_t batch_size = static_cast<int32_t>(results.size());
int32_t context_size = ContextSize();
std::array<int64_t, 2> shape{batch_size, context_size};
Ort::Value decoder_input = Ort::Value::CreateTensor<int64_t>(
Allocator(), shape.data(), shape.size());
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
for (const auto &r : results) {
const int64_t *begin = r.tokens.data() + r.tokens.size() - context_size;
const int64_t *end = r.tokens.data() + r.tokens.size();
std::copy(begin, end, p);
p += context_size;
}
return decoder_input;
}
Ort::Value OnlineTransducerModel::BuildDecoderInput(
const std::vector<Hypothesis> &hyps) {
int32_t batch_size = static_cast<int32_t>(hyps.size());
int32_t context_size = ContextSize();
std::array<int64_t, 2> shape{batch_size, context_size};
Ort::Value decoder_input = Ort::Value::CreateTensor<int64_t>(
Allocator(), shape.data(), shape.size());
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
for (const auto &h : hyps) {
std::copy(h.ys.end() - context_size, h.ys.end(), p);
p += context_size;
}
return decoder_input;
}
#if __ANDROID_API__ >= 9
std::unique_ptr<OnlineTransducerModel> OnlineTransducerModel::Create(
AAssetManager *mgr, const OnlineTransducerModelConfig &config) {
... ...
... ... @@ -14,6 +14,8 @@
#endif
#include "onnxruntime_cxx_api.h" // NOLINT
#include "sherpa-onnx/csrc/hypothesis.h"
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model-config.h"
namespace sherpa_onnx {
... ... @@ -71,9 +73,6 @@ class OnlineTransducerModel {
Ort::Value features,
std::vector<Ort::Value> states) = 0; // NOLINT
virtual Ort::Value BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results) = 0;
/** Run the decoder network.
*
* Caution: We assume there are no recurrent connections in the decoder and
... ... @@ -125,7 +124,13 @@ class OnlineTransducerModel {
virtual int32_t VocabSize() const = 0;
virtual int32_t SubsamplingFactor() const { return 4; }
virtual OrtAllocator *Allocator() = 0;
Ort::Value BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results);
Ort::Value BuildDecoderInput(const std::vector<Hypothesis> &hyps);
};
} // namespace sherpa_onnx
... ...
// sherpa-onnx/csrc/online-transducer-modified-beam-search-decoder.cc
//
// Copyright (c) 2023 Pingfeng Luo
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/online-transducer-modified-beam-search-decoder.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace sherpa_onnx {
static Ort::Value Repeat(OrtAllocator *allocator, Ort::Value *cur_encoder_out,
const std::vector<int32_t> &hyps_num_split) {
std::vector<int64_t> cur_encoder_out_shape =
cur_encoder_out->GetTensorTypeAndShapeInfo().GetShape();
std::array<int64_t, 2> ans_shape{hyps_num_split.back(),
cur_encoder_out_shape[1]};
Ort::Value ans = Ort::Value::CreateTensor<float>(allocator, ans_shape.data(),
ans_shape.size());
const float *src = cur_encoder_out->GetTensorData<float>();
float *dst = ans.GetTensorMutableData<float>();
int32_t batch_size = static_cast<int32_t>(hyps_num_split.size()) - 1;
for (int32_t b = 0; b != batch_size; ++b) {
int32_t cur_stream_hyps_num = hyps_num_split[b + 1] - hyps_num_split[b];
for (int32_t i = 0; i != cur_stream_hyps_num; ++i) {
std::copy(src, src + cur_encoder_out_shape[1], dst);
dst += cur_encoder_out_shape[1];
}
src += cur_encoder_out_shape[1];
}
return ans;
}
static void LogSoftmax(float *in, int32_t w, int32_t h) {
for (int32_t i = 0; i != h; ++i) {
LogSoftmax(in, w);
in += w;
}
}
OnlineTransducerDecoderResult
OnlineTransducerModifiedBeamSearchDecoder::GetEmptyResult() const {
int32_t context_size = model_->ContextSize();
int32_t blank_id = 0; // always 0
OnlineTransducerDecoderResult r;
std::vector<int32_t> blanks(context_size, blank_id);
Hypotheses blank_hyp({{blanks, 0}});
r.hyps = std::move(blank_hyp);
return r;
}
void OnlineTransducerModifiedBeamSearchDecoder::StripLeadingBlanks(
OnlineTransducerDecoderResult *r) const {
int32_t context_size = model_->ContextSize();
auto hyp = r->hyps.GetMostProbable(true);
std::vector<int64_t> tokens(hyp.ys.begin() + context_size, hyp.ys.end());
r->tokens = std::move(tokens);
r->num_trailing_blanks = hyp.num_trailing_blanks;
}
void OnlineTransducerModifiedBeamSearchDecoder::Decode(
Ort::Value encoder_out,
std::vector<OnlineTransducerDecoderResult> *result) {
std::vector<int64_t> encoder_out_shape =
encoder_out.GetTensorTypeAndShapeInfo().GetShape();
if (encoder_out_shape[0] != result->size()) {
fprintf(stderr,
"Size mismatch! encoder_out.size(0) %d, result.size(0): %d\n",
static_cast<int32_t>(encoder_out_shape[0]),
static_cast<int32_t>(result->size()));
exit(-1);
}
int32_t batch_size = static_cast<int32_t>(encoder_out_shape[0]);
int32_t num_frames = static_cast<int32_t>(encoder_out_shape[1]);
int32_t vocab_size = model_->VocabSize();
std::vector<Hypotheses> cur;
for (auto &r : *result) {
cur.push_back(std::move(r.hyps));
}
std::vector<Hypothesis> prev;
for (int32_t t = 0; t != num_frames; ++t) {
// Due to merging paths with identical token sequences,
// not all utterances have "num_active_paths" paths.
int32_t hyps_num_acc = 0;
std::vector<int32_t> hyps_num_split;
hyps_num_split.push_back(0);
prev.clear();
for (auto &hyps : cur) {
for (auto &h : hyps) {
prev.push_back(std::move(h.second));
hyps_num_acc++;
}
hyps_num_split.push_back(hyps_num_acc);
}
cur.clear();
cur.reserve(batch_size);
Ort::Value decoder_input = model_->BuildDecoderInput(prev);
Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
Ort::Value cur_encoder_out =
GetEncoderOutFrame(model_->Allocator(), &encoder_out, t);
cur_encoder_out =
Repeat(model_->Allocator(), &cur_encoder_out, hyps_num_split);
Ort::Value logit = model_->RunJoiner(
std::move(cur_encoder_out), Clone(model_->Allocator(), &decoder_out));
float *p_logit = logit.GetTensorMutableData<float>();
for (int32_t b = 0; b < batch_size; ++b) {
int32_t start = hyps_num_split[b];
int32_t end = hyps_num_split[b + 1];
LogSoftmax(p_logit, vocab_size, (end - start));
auto topk =
TopkIndex(p_logit, vocab_size * (end - start), max_active_paths_);
Hypotheses hyps;
for (auto i : topk) {
int32_t hyp_index = i / vocab_size + start;
int32_t new_token = i % vocab_size;
Hypothesis new_hyp = prev[hyp_index];
if (new_token != 0) {
new_hyp.ys.push_back(new_token);
new_hyp.num_trailing_blanks = 0;
} else {
++new_hyp.num_trailing_blanks;
}
new_hyp.log_prob += p_logit[i];
hyps.Add(std::move(new_hyp));
}
cur.push_back(std::move(hyps));
p_logit += vocab_size * (end - start);
}
}
for (int32_t b = 0; b != batch_size; ++b) {
(*result)[b].hyps = std::move(cur[b]);
}
}
} // namespace sherpa_onnx
... ...
// sherpa-onnx/csrc/online-transducer-modified_beam-search-decoder.h
//
// Copyright (c) 2023 Pingfeng Luo
// Copyright (c) 2023 Xiaomi Corporation
#ifndef SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_MODIFIED_BEAM_SEARCH_DECODER_H_
#define SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_MODIFIED_BEAM_SEARCH_DECODER_H_
#include <vector>
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/online-transducer-model.h"
namespace sherpa_onnx {
class OnlineTransducerModifiedBeamSearchDecoder
: public OnlineTransducerDecoder {
public:
OnlineTransducerModifiedBeamSearchDecoder(OnlineTransducerModel *model,
int32_t max_active_paths)
: model_(model), max_active_paths_(max_active_paths) {}
OnlineTransducerDecoderResult GetEmptyResult() const override;
void StripLeadingBlanks(OnlineTransducerDecoderResult *r) const override;
void Decode(Ort::Value encoder_out,
std::vector<OnlineTransducerDecoderResult> *result) override;
private:
OnlineTransducerModel *model_; // Not owned
int32_t max_active_paths_;
};
} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_ONLINE_TRANSDUCER_MODIFIED_BEAM_SEARCH_DECODER_H_
... ...
... ... @@ -461,24 +461,6 @@ OnlineZipformerTransducerModel::RunEncoder(Ort::Value features,
return {std::move(encoder_out[0]), std::move(next_states)};
}
Ort::Value OnlineZipformerTransducerModel::BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results) {
int32_t batch_size = static_cast<int32_t>(results.size());
std::array<int64_t, 2> shape{batch_size, context_size_};
Ort::Value decoder_input =
Ort::Value::CreateTensor<int64_t>(allocator_, shape.data(), shape.size());
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
for (const auto &r : results) {
const int64_t *begin = r.tokens.data() + r.tokens.size() - context_size_;
const int64_t *end = r.tokens.data() + r.tokens.size();
std::copy(begin, end, p);
p += context_size_;
}
return decoder_input;
}
Ort::Value OnlineZipformerTransducerModel::RunDecoder(
Ort::Value decoder_input) {
auto decoder_out = decoder_sess_->Run(
... ...
... ... @@ -41,9 +41,6 @@ class OnlineZipformerTransducerModel : public OnlineTransducerModel {
std::pair<Ort::Value, std::vector<Ort::Value>> RunEncoder(
Ort::Value features, std::vector<Ort::Value> states) override;
Ort::Value BuildDecoderInput(
const std::vector<OnlineTransducerDecoderResult> &results) override;
Ort::Value RunDecoder(Ort::Value decoder_input) override;
Ort::Value RunJoiner(Ort::Value encoder_out, Ort::Value decoder_out) override;
... ...
... ... @@ -44,6 +44,38 @@ void GetOutputNames(Ort::Session *sess, std::vector<std::string> *output_names,
}
}
Ort::Value GetEncoderOutFrame(OrtAllocator *allocator, Ort::Value *encoder_out,
int32_t t) {
std::vector<int64_t> encoder_out_shape =
encoder_out->GetTensorTypeAndShapeInfo().GetShape();
auto batch_size = encoder_out_shape[0];
auto num_frames = encoder_out_shape[1];
assert(t < num_frames);
auto encoder_out_dim = encoder_out_shape[2];
auto offset = num_frames * encoder_out_dim;
auto memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
std::array<int64_t, 2> shape{batch_size, encoder_out_dim};
Ort::Value ans =
Ort::Value::CreateTensor<float>(allocator, shape.data(), shape.size());
float *dst = ans.GetTensorMutableData<float>();
const float *src = encoder_out->GetTensorData<float>();
for (int32_t i = 0; i != batch_size; ++i) {
std::copy(src + t * encoder_out_dim, src + (t + 1) * encoder_out_dim, dst);
src += offset;
dst += encoder_out_dim;
}
return ans;
}
void PrintModelMetadata(std::ostream &os, const Ort::ModelMetadata &meta_data) {
Ort::AllocatorWithDefaultOptions allocator;
std::vector<Ort::AllocatedStringPtr> v =
... ...
... ... @@ -10,6 +10,7 @@
#include <locale>
#endif
#include <cassert>
#include <ostream>
#include <string>
#include <vector>
... ... @@ -57,6 +58,17 @@ void GetInputNames(Ort::Session *sess, std::vector<std::string> *input_names,
void GetOutputNames(Ort::Session *sess, std::vector<std::string> *output_names,
std::vector<const char *> *output_names_ptr);
/**
* Get the output frame of Encoder
*
* @param allocator allocator of onnxruntime
* @param encoder_out encoder out tensor
* @param t frame_index
*
*/
Ort::Value GetEncoderOutFrame(OrtAllocator *allocator, Ort::Value *encoder_out,
int32_t t);
void PrintModelMetadata(std::ostream &os,
const Ort::ModelMetadata &meta_data); // NOLINT
... ...