Fangjun Kuang
Committed by GitHub

Add C++ support for streaming NeMo CTC models. (#857)

@@ -14,6 +14,28 @@ echo "PATH: $PATH" @@ -14,6 +14,28 @@ echo "PATH: $PATH"
14 which $EXE 14 which $EXE
15 15
16 log "------------------------------------------------------------" 16 log "------------------------------------------------------------"
  17 +log "Run streaming NeMo CTC "
  18 +log "------------------------------------------------------------"
  19 +
  20 +url=https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-80ms.tar.bz2
  21 +name=$(basename $url)
  22 +repo=$(basename -s .tar.bz2 $name)
  23 +
  24 +curl -SL -O $url
  25 +tar xvf $name
  26 +rm $name
  27 +ls -lh $repo
  28 +
  29 +$EXE \
  30 + --nemo-ctc-model=$repo/model.onnx \
  31 + --tokens=$repo/tokens.txt \
  32 + $repo/test_wavs/0.wav \
  33 + $repo/test_wavs/1.wav \
  34 + $repo/test_wavs/8k.wav
  35 +
  36 +rm -rf $repo
  37 +
  38 +log "------------------------------------------------------------"
17 log "Run streaming Zipformer2 CTC HLG decoding " 39 log "Run streaming Zipformer2 CTC HLG decoding "
18 log "------------------------------------------------------------" 40 log "------------------------------------------------------------"
19 curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18.tar.bz2 41 curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-streaming-zipformer-ctc-small-2024-03-18.tar.bz2
@@ -8,6 +8,19 @@ log() { @@ -8,6 +8,19 @@ log() {
8 echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" 8 echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
9 } 9 }
10 10
  11 +log "test online NeMo CTC"
  12 +
  13 +url=https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-80ms.tar.bz2
  14 +name=$(basename $url)
  15 +repo=$(basename -s .tar.bz2 $name)
  16 +
  17 +curl -SL -O $url
  18 +tar xvf $name
  19 +rm $name
  20 +ls -lh $repo
  21 +python3 ./python-api-examples/online-nemo-ctc-decode-files.py
  22 +rm -rf $repo
  23 +
11 log "test offline punctuation" 24 log "test offline punctuation"
12 25
13 curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/punctuation-models/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12.tar.bz2 26 curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/punctuation-models/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12.tar.bz2
@@ -128,6 +128,14 @@ jobs: @@ -128,6 +128,14 @@ jobs:
128 name: release-${{ matrix.build_type }}-with-shared-lib-${{ matrix.shared_lib }}-with-tts-${{ matrix.with_tts }} 128 name: release-${{ matrix.build_type }}-with-shared-lib-${{ matrix.shared_lib }}-with-tts-${{ matrix.with_tts }}
129 path: install/* 129 path: install/*
130 130
  131 + - name: Test online CTC
  132 + shell: bash
  133 + run: |
  134 + export PATH=$PWD/build/bin:$PATH
  135 + export EXE=sherpa-onnx
  136 +
  137 + .github/scripts/test-online-ctc.sh
  138 +
131 - name: Test offline transducer 139 - name: Test offline transducer
132 shell: bash 140 shell: bash
133 run: | 141 run: |
@@ -163,14 +171,6 @@ jobs: @@ -163,14 +171,6 @@ jobs:
163 171
164 .github/scripts/test-offline-ctc.sh 172 .github/scripts/test-offline-ctc.sh
165 173
166 - - name: Test online CTC  
167 - shell: bash  
168 - run: |  
169 - export PATH=$PWD/build/bin:$PATH  
170 - export EXE=sherpa-onnx  
171 -  
172 - .github/scripts/test-online-ctc.sh  
173 -  
174 - name: Test offline punctuation 174 - name: Test offline punctuation
175 shell: bash 175 shell: bash
176 run: | 176 run: |
  1 +#!/usr/bin/env python3
  2 +
  3 +"""
  4 +This file shows how to use a streaming CTC model from NeMo
  5 +to decode files.
  6 +
  7 +Please download model files from
  8 +https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
  9 +
  10 +
  11 +The example model is converted from
  12 +https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_hybrid_large_streaming_80ms
  13 +"""
  14 +
  15 +from pathlib import Path
  16 +
  17 +import numpy as np
  18 +import sherpa_onnx
  19 +import soundfile as sf
  20 +
  21 +
  22 +def create_recognizer():
  23 + model = "./sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-80ms/model.onnx"
  24 + tokens = "./sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-80ms/tokens.txt"
  25 +
  26 + test_wav = "./sherpa-onnx-nemo-streaming-fast-conformer-ctc-en-80ms/test_wavs/0.wav"
  27 +
  28 + if not Path(model).is_file() or not Path(test_wav).is_file():
  29 + raise ValueError(
  30 + """Please download model files from
  31 + https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
  32 + """
  33 + )
  34 + return (
  35 + sherpa_onnx.OnlineRecognizer.from_nemo_ctc(
  36 + model=model,
  37 + tokens=tokens,
  38 + debug=True,
  39 + ),
  40 + test_wav,
  41 + )
  42 +
  43 +
  44 +def main():
  45 + recognizer, wave_filename = create_recognizer()
  46 +
  47 + audio, sample_rate = sf.read(wave_filename, dtype="float32", always_2d=True)
  48 + audio = audio[:, 0] # only use the first channel
  49 +
  50 + # audio is a 1-D float32 numpy array normalized to the range [-1, 1]
  51 + # sample_rate does not need to be 16000 Hz
  52 +
  53 + stream = recognizer.create_stream()
  54 + stream.accept_waveform(sample_rate, audio)
  55 +
  56 + tail_paddings = np.zeros(int(0.66 * sample_rate), dtype=np.float32)
  57 + stream.accept_waveform(sample_rate, tail_paddings)
  58 + stream.input_finished()
  59 +
  60 + while recognizer.is_ready(stream):
  61 + recognizer.decode_stream(stream)
  62 + print(wave_filename)
  63 + print(recognizer.get_result_all(stream))
  64 +
  65 +
  66 +if __name__ == "__main__":
  67 + main()
@@ -100,7 +100,7 @@ class OnnxModel: @@ -100,7 +100,7 @@ class OnnxModel:
100 dtype=torch.float32, 100 dtype=torch.float32,
101 ).numpy() 101 ).numpy()
102 102
103 - self.cache_last_channel_len = torch.ones([1], dtype=torch.int64).numpy() 103 + self.cache_last_channel_len = torch.zeros([1], dtype=torch.int64).numpy()
104 104
105 def __call__(self, x: np.ndarray): 105 def __call__(self, x: np.ndarray):
106 # x: (T, C) 106 # x: (T, C)
@@ -142,7 +142,7 @@ class OnnxModel: @@ -142,7 +142,7 @@ class OnnxModel:
142 dtype=torch.float32, 142 dtype=torch.float32,
143 ).numpy() 143 ).numpy()
144 144
145 - self.cache_last_channel_len = torch.ones([1], dtype=torch.int64).numpy() 145 + self.cache_last_channel_len = torch.zeros([1], dtype=torch.int64).numpy()
146 146
147 def run_encoder(self, x: np.ndarray): 147 def run_encoder(self, x: np.ndarray):
148 # x: (T, C) 148 # x: (T, C)
@@ -61,6 +61,8 @@ set(sources @@ -61,6 +61,8 @@ set(sources
61 online-lm.cc 61 online-lm.cc
62 online-lstm-transducer-model.cc 62 online-lstm-transducer-model.cc
63 online-model-config.cc 63 online-model-config.cc
  64 + online-nemo-ctc-model-config.cc
  65 + online-nemo-ctc-model.cc
64 online-paraformer-model-config.cc 66 online-paraformer-model-config.cc
65 online-paraformer-model.cc 67 online-paraformer-model.cc
66 online-recognizer-impl.cc 68 online-recognizer-impl.cc
@@ -4,11 +4,12 @@ @@ -4,11 +4,12 @@
4 #ifndef SHERPA_ONNX_CSRC_OFFLINE_PUNCTUATION_CT_TRANSFORMER_IMPL_H_ 4 #ifndef SHERPA_ONNX_CSRC_OFFLINE_PUNCTUATION_CT_TRANSFORMER_IMPL_H_
5 #define SHERPA_ONNX_CSRC_OFFLINE_PUNCTUATION_CT_TRANSFORMER_IMPL_H_ 5 #define SHERPA_ONNX_CSRC_OFFLINE_PUNCTUATION_CT_TRANSFORMER_IMPL_H_
6 6
  7 +#include <math.h>
  8 +
7 #include <memory> 9 #include <memory>
8 #include <string> 10 #include <string>
9 #include <utility> 11 #include <utility>
10 #include <vector> 12 #include <vector>
11 -#include <math.h>  
12 13
13 #if __ANDROID_API__ >= 9 14 #if __ANDROID_API__ >= 9
14 #include "android/asset_manager.h" 15 #include "android/asset_manager.h"
@@ -61,7 +62,9 @@ class OfflinePunctuationCtTransformerImpl : public OfflinePunctuationImpl { @@ -61,7 +62,9 @@ class OfflinePunctuationCtTransformerImpl : public OfflinePunctuationImpl {
61 62
62 int32_t segment_size = 20; 63 int32_t segment_size = 20;
63 int32_t max_len = 200; 64 int32_t max_len = 200;
64 - int32_t num_segments = ceil(((float)token_ids.size() + segment_size - 1) / segment_size); 65 + int32_t num_segments =
  66 + ceil((static_cast<float>(token_ids.size()) + segment_size - 1) /
  67 + segment_size);
65 68
66 std::vector<int32_t> punctuations; 69 std::vector<int32_t> punctuations;
67 int32_t last = -1; 70 int32_t last = -1;
@@ -10,6 +10,7 @@ @@ -10,6 +10,7 @@
10 #include <string> 10 #include <string>
11 11
12 #include "sherpa-onnx/csrc/macros.h" 12 #include "sherpa-onnx/csrc/macros.h"
  13 +#include "sherpa-onnx/csrc/online-nemo-ctc-model.h"
13 #include "sherpa-onnx/csrc/online-wenet-ctc-model.h" 14 #include "sherpa-onnx/csrc/online-wenet-ctc-model.h"
14 #include "sherpa-onnx/csrc/online-zipformer2-ctc-model.h" 15 #include "sherpa-onnx/csrc/online-zipformer2-ctc-model.h"
15 #include "sherpa-onnx/csrc/onnx-utils.h" 16 #include "sherpa-onnx/csrc/onnx-utils.h"
@@ -22,6 +23,8 @@ std::unique_ptr<OnlineCtcModel> OnlineCtcModel::Create( @@ -22,6 +23,8 @@ std::unique_ptr<OnlineCtcModel> OnlineCtcModel::Create(
22 return std::make_unique<OnlineWenetCtcModel>(config); 23 return std::make_unique<OnlineWenetCtcModel>(config);
23 } else if (!config.zipformer2_ctc.model.empty()) { 24 } else if (!config.zipformer2_ctc.model.empty()) {
24 return std::make_unique<OnlineZipformer2CtcModel>(config); 25 return std::make_unique<OnlineZipformer2CtcModel>(config);
  26 + } else if (!config.nemo_ctc.model.empty()) {
  27 + return std::make_unique<OnlineNeMoCtcModel>(config);
25 } else { 28 } else {
26 SHERPA_ONNX_LOGE("Please specify a CTC model"); 29 SHERPA_ONNX_LOGE("Please specify a CTC model");
27 exit(-1); 30 exit(-1);
@@ -36,6 +39,8 @@ std::unique_ptr<OnlineCtcModel> OnlineCtcModel::Create( @@ -36,6 +39,8 @@ std::unique_ptr<OnlineCtcModel> OnlineCtcModel::Create(
36 return std::make_unique<OnlineWenetCtcModel>(mgr, config); 39 return std::make_unique<OnlineWenetCtcModel>(mgr, config);
37 } else if (!config.zipformer2_ctc.model.empty()) { 40 } else if (!config.zipformer2_ctc.model.empty()) {
38 return std::make_unique<OnlineZipformer2CtcModel>(mgr, config); 41 return std::make_unique<OnlineZipformer2CtcModel>(mgr, config);
  42 + } else if (!config.nemo_ctc.model.empty()) {
  43 + return std::make_unique<OnlineNeMoCtcModel>(mgr, config);
39 } else { 44 } else {
40 SHERPA_ONNX_LOGE("Please specify a CTC model"); 45 SHERPA_ONNX_LOGE("Please specify a CTC model");
41 exit(-1); 46 exit(-1);
@@ -15,6 +15,7 @@ void OnlineModelConfig::Register(ParseOptions *po) { @@ -15,6 +15,7 @@ void OnlineModelConfig::Register(ParseOptions *po) {
15 paraformer.Register(po); 15 paraformer.Register(po);
16 wenet_ctc.Register(po); 16 wenet_ctc.Register(po);
17 zipformer2_ctc.Register(po); 17 zipformer2_ctc.Register(po);
  18 + nemo_ctc.Register(po);
18 19
19 po->Register("tokens", &tokens, "Path to tokens.txt"); 20 po->Register("tokens", &tokens, "Path to tokens.txt");
20 21
@@ -31,10 +32,10 @@ void OnlineModelConfig::Register(ParseOptions *po) { @@ -31,10 +32,10 @@ void OnlineModelConfig::Register(ParseOptions *po) {
31 po->Register("provider", &provider, 32 po->Register("provider", &provider,
32 "Specify a provider to use: cpu, cuda, coreml"); 33 "Specify a provider to use: cpu, cuda, coreml");
33 34
34 - po->Register(  
35 - "model-type", &model_type, 35 + po->Register("model-type", &model_type,
36 "Specify it to reduce model initialization time. " 36 "Specify it to reduce model initialization time. "
37 - "Valid values are: conformer, lstm, zipformer, zipformer2, wenet_ctc" 37 + "Valid values are: conformer, lstm, zipformer, zipformer2, "
  38 + "wenet_ctc, nemo_ctc. "
38 "All other values lead to loading the model twice."); 39 "All other values lead to loading the model twice.");
39 } 40 }
40 41
@@ -61,6 +62,10 @@ bool OnlineModelConfig::Validate() const { @@ -61,6 +62,10 @@ bool OnlineModelConfig::Validate() const {
61 return zipformer2_ctc.Validate(); 62 return zipformer2_ctc.Validate();
62 } 63 }
63 64
  65 + if (!nemo_ctc.model.empty()) {
  66 + return nemo_ctc.Validate();
  67 + }
  68 +
64 return transducer.Validate(); 69 return transducer.Validate();
65 } 70 }
66 71
@@ -72,6 +77,7 @@ std::string OnlineModelConfig::ToString() const { @@ -72,6 +77,7 @@ std::string OnlineModelConfig::ToString() const {
72 os << "paraformer=" << paraformer.ToString() << ", "; 77 os << "paraformer=" << paraformer.ToString() << ", ";
73 os << "wenet_ctc=" << wenet_ctc.ToString() << ", "; 78 os << "wenet_ctc=" << wenet_ctc.ToString() << ", ";
74 os << "zipformer2_ctc=" << zipformer2_ctc.ToString() << ", "; 79 os << "zipformer2_ctc=" << zipformer2_ctc.ToString() << ", ";
  80 + os << "nemo_ctc=" << nemo_ctc.ToString() << ", ";
75 os << "tokens=\"" << tokens << "\", "; 81 os << "tokens=\"" << tokens << "\", ";
76 os << "num_threads=" << num_threads << ", "; 82 os << "num_threads=" << num_threads << ", ";
77 os << "warm_up=" << warm_up << ", "; 83 os << "warm_up=" << warm_up << ", ";
@@ -6,6 +6,7 @@ @@ -6,6 +6,7 @@
6 6
7 #include <string> 7 #include <string>
8 8
  9 +#include "sherpa-onnx/csrc/online-nemo-ctc-model-config.h"
9 #include "sherpa-onnx/csrc/online-paraformer-model-config.h" 10 #include "sherpa-onnx/csrc/online-paraformer-model-config.h"
10 #include "sherpa-onnx/csrc/online-transducer-model-config.h" 11 #include "sherpa-onnx/csrc/online-transducer-model-config.h"
11 #include "sherpa-onnx/csrc/online-wenet-ctc-model-config.h" 12 #include "sherpa-onnx/csrc/online-wenet-ctc-model-config.h"
@@ -18,6 +19,7 @@ struct OnlineModelConfig { @@ -18,6 +19,7 @@ struct OnlineModelConfig {
18 OnlineParaformerModelConfig paraformer; 19 OnlineParaformerModelConfig paraformer;
19 OnlineWenetCtcModelConfig wenet_ctc; 20 OnlineWenetCtcModelConfig wenet_ctc;
20 OnlineZipformer2CtcModelConfig zipformer2_ctc; 21 OnlineZipformer2CtcModelConfig zipformer2_ctc;
  22 + OnlineNeMoCtcModelConfig nemo_ctc;
21 std::string tokens; 23 std::string tokens;
22 int32_t num_threads = 1; 24 int32_t num_threads = 1;
23 int32_t warm_up = 0; 25 int32_t warm_up = 0;
@@ -30,6 +32,7 @@ struct OnlineModelConfig { @@ -30,6 +32,7 @@ struct OnlineModelConfig {
30 // - zipformer, zipformer transducer from icefall 32 // - zipformer, zipformer transducer from icefall
31 // - zipformer2, zipformer2 transducer or CTC from icefall 33 // - zipformer2, zipformer2 transducer or CTC from icefall
32 // - wenet_ctc, wenet CTC model 34 // - wenet_ctc, wenet CTC model
  35 + // - nemo_ctc, NeMo CTC model
33 // 36 //
34 // All other values are invalid and lead to loading the model twice. 37 // All other values are invalid and lead to loading the model twice.
35 std::string model_type; 38 std::string model_type;
@@ -39,6 +42,7 @@ struct OnlineModelConfig { @@ -39,6 +42,7 @@ struct OnlineModelConfig {
39 const OnlineParaformerModelConfig &paraformer, 42 const OnlineParaformerModelConfig &paraformer,
40 const OnlineWenetCtcModelConfig &wenet_ctc, 43 const OnlineWenetCtcModelConfig &wenet_ctc,
41 const OnlineZipformer2CtcModelConfig &zipformer2_ctc, 44 const OnlineZipformer2CtcModelConfig &zipformer2_ctc,
  45 + const OnlineNeMoCtcModelConfig &nemo_ctc,
42 const std::string &tokens, int32_t num_threads, 46 const std::string &tokens, int32_t num_threads,
43 int32_t warm_up, bool debug, const std::string &provider, 47 int32_t warm_up, bool debug, const std::string &provider,
44 const std::string &model_type) 48 const std::string &model_type)
@@ -46,6 +50,7 @@ struct OnlineModelConfig { @@ -46,6 +50,7 @@ struct OnlineModelConfig {
46 paraformer(paraformer), 50 paraformer(paraformer),
47 wenet_ctc(wenet_ctc), 51 wenet_ctc(wenet_ctc),
48 zipformer2_ctc(zipformer2_ctc), 52 zipformer2_ctc(zipformer2_ctc),
  53 + nemo_ctc(nemo_ctc),
49 tokens(tokens), 54 tokens(tokens),
50 num_threads(num_threads), 55 num_threads(num_threads),
51 warm_up(warm_up), 56 warm_up(warm_up),
  1 +// sherpa-onnx/csrc/online-nemo-ctc-model-config.cc
  2 +//
  3 +// Copyright (c) 2024 Xiaomi Corporation
  4 +
  5 +#include "sherpa-onnx/csrc/online-nemo-ctc-model-config.h"
  6 +
  7 +#include "sherpa-onnx/csrc/file-utils.h"
  8 +#include "sherpa-onnx/csrc/macros.h"
  9 +
  10 +namespace sherpa_onnx {
  11 +
  12 +void OnlineNeMoCtcModelConfig::Register(ParseOptions *po) {
  13 + po->Register("nemo-ctc-model", &model,
  14 + "Path to CTC model.onnx from NeMo. Please see "
  15 + "https://github.com/k2-fsa/sherpa-onnx/pull/843");
  16 +}
  17 +
  18 +bool OnlineNeMoCtcModelConfig::Validate() const {
  19 + if (!FileExists(model)) {
  20 + SHERPA_ONNX_LOGE("NeMo CTC model '%s' does not exist", model.c_str());
  21 + return false;
  22 + }
  23 +
  24 + return true;
  25 +}
  26 +
  27 +std::string OnlineNeMoCtcModelConfig::ToString() const {
  28 + std::ostringstream os;
  29 +
  30 + os << "OnlineNeMoCtcModelConfig(";
  31 + os << "model=\"" << model << "\")";
  32 +
  33 + return os.str();
  34 +}
  35 +
  36 +} // namespace sherpa_onnx
  1 +// sherpa-onnx/csrc/online-nemo-ctc-model-config.h
  2 +//
  3 +// Copyright (c) 2024 Xiaomi Corporation
  4 +#ifndef SHERPA_ONNX_CSRC_ONLINE_NEMO_CTC_MODEL_CONFIG_H_
  5 +#define SHERPA_ONNX_CSRC_ONLINE_NEMO_CTC_MODEL_CONFIG_H_
  6 +
  7 +#include <string>
  8 +
  9 +#include "sherpa-onnx/csrc/parse-options.h"
  10 +
  11 +namespace sherpa_onnx {
  12 +
  13 +struct OnlineNeMoCtcModelConfig {
  14 + std::string model;
  15 +
  16 + OnlineNeMoCtcModelConfig() = default;
  17 +
  18 + explicit OnlineNeMoCtcModelConfig(const std::string &model) : model(model) {}
  19 +
  20 + void Register(ParseOptions *po);
  21 + bool Validate() const;
  22 +
  23 + std::string ToString() const;
  24 +};
  25 +
  26 +} // namespace sherpa_onnx
  27 +
  28 +#endif // SHERPA_ONNX_CSRC_ONLINE_NEMO_CTC_MODEL_CONFIG_H_
  1 +// sherpa-onnx/csrc/online-nemo-ctc-model.cc
  2 +//
  3 +// Copyright (c) 2023 Xiaomi Corporation
  4 +
  5 +#include "sherpa-onnx/csrc/online-nemo-ctc-model.h"
  6 +
  7 +#include <algorithm>
  8 +#include <cmath>
  9 +#include <string>
  10 +
  11 +#if __ANDROID_API__ >= 9
  12 +#include "android/asset_manager.h"
  13 +#include "android/asset_manager_jni.h"
  14 +#endif
  15 +
  16 +#include "sherpa-onnx/csrc/cat.h"
  17 +#include "sherpa-onnx/csrc/macros.h"
  18 +#include "sherpa-onnx/csrc/onnx-utils.h"
  19 +#include "sherpa-onnx/csrc/session.h"
  20 +#include "sherpa-onnx/csrc/text-utils.h"
  21 +#include "sherpa-onnx/csrc/transpose.h"
  22 +#include "sherpa-onnx/csrc/unbind.h"
  23 +
  24 +namespace sherpa_onnx {
  25 +
  26 +class OnlineNeMoCtcModel::Impl {
  27 + public:
  28 + explicit Impl(const OnlineModelConfig &config)
  29 + : config_(config),
  30 + env_(ORT_LOGGING_LEVEL_ERROR),
  31 + sess_opts_(GetSessionOptions(config)),
  32 + allocator_{} {
  33 + {
  34 + auto buf = ReadFile(config.nemo_ctc.model);
  35 + Init(buf.data(), buf.size());
  36 + }
  37 + }
  38 +
  39 +#if __ANDROID_API__ >= 9
  40 + Impl(AAssetManager *mgr, const OnlineModelConfig &config)
  41 + : config_(config),
  42 + env_(ORT_LOGGING_LEVEL_WARNING),
  43 + sess_opts_(GetSessionOptions(config)),
  44 + allocator_{} {
  45 + {
  46 + auto buf = ReadFile(mgr, config.nemo_ctc.model);
  47 + Init(buf.data(), buf.size());
  48 + }
  49 + }
  50 +#endif
  51 +
  52 + std::vector<Ort::Value> Forward(Ort::Value x,
  53 + std::vector<Ort::Value> states) {
  54 + Ort::Value &cache_last_channel = states[0];
  55 + Ort::Value &cache_last_time = states[1];
  56 + Ort::Value &cache_last_channel_len = states[2];
  57 +
  58 + int32_t batch_size = x.GetTensorTypeAndShapeInfo().GetShape()[0];
  59 +
  60 + std::array<int64_t, 1> length_shape{batch_size};
  61 +
  62 + Ort::Value length = Ort::Value::CreateTensor<int64_t>(
  63 + allocator_, length_shape.data(), length_shape.size());
  64 +
  65 + int64_t *p_length = length.GetTensorMutableData<int64_t>();
  66 +
  67 + std::fill(p_length, p_length + batch_size, ChunkLength());
  68 +
  69 + // (B, T, C) -> (B, C, T)
  70 + x = Transpose12(allocator_, &x);
  71 +
  72 + std::array<Ort::Value, 5> inputs = {
  73 + std::move(x), View(&length), std::move(cache_last_channel),
  74 + std::move(cache_last_time), std::move(cache_last_channel_len)};
  75 +
  76 + auto out =
  77 + sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
  78 + output_names_ptr_.data(), output_names_ptr_.size());
  79 + // out[0]: logit
  80 + // out[1] logit_length
  81 + // out[2:] states_next
  82 + //
  83 + // we need to remove out[1]
  84 +
  85 + std::vector<Ort::Value> ans;
  86 + ans.reserve(out.size() - 1);
  87 +
  88 + for (int32_t i = 0; i != out.size(); ++i) {
  89 + if (i == 1) {
  90 + continue;
  91 + }
  92 +
  93 + ans.push_back(std::move(out[i]));
  94 + }
  95 +
  96 + return ans;
  97 + }
  98 +
  99 + int32_t VocabSize() const { return vocab_size_; }
  100 +
  101 + int32_t ChunkLength() const { return window_size_; }
  102 +
  103 + int32_t ChunkShift() const { return chunk_shift_; }
  104 +
  105 + OrtAllocator *Allocator() const { return allocator_; }
  106 +
  107 + // Return a vector containing 3 tensors
  108 + // - cache_last_channel
  109 + // - cache_last_time_
  110 + // - cache_last_channel_len
  111 + std::vector<Ort::Value> GetInitStates() {
  112 + std::vector<Ort::Value> ans;
  113 + ans.reserve(3);
  114 + ans.push_back(View(&cache_last_channel_));
  115 + ans.push_back(View(&cache_last_time_));
  116 + ans.push_back(View(&cache_last_channel_len_));
  117 +
  118 + return ans;
  119 + }
  120 +
  121 + std::vector<Ort::Value> StackStates(
  122 + std::vector<std::vector<Ort::Value>> states) const {
  123 + int32_t batch_size = static_cast<int32_t>(states.size());
  124 + if (batch_size == 1) {
  125 + return std::move(states[0]);
  126 + }
  127 +
  128 + std::vector<Ort::Value> ans;
  129 +
  130 + // stack cache_last_channel
  131 + std::vector<const Ort::Value *> buf(batch_size);
  132 +
  133 + // there are 3 states to be stacked
  134 + for (int32_t i = 0; i != 3; ++i) {
  135 + buf.clear();
  136 + buf.reserve(batch_size);
  137 +
  138 + for (int32_t b = 0; b != batch_size; ++b) {
  139 + assert(states[b].size() == 3);
  140 + buf.push_back(&states[b][i]);
  141 + }
  142 +
  143 + Ort::Value c{nullptr};
  144 + if (i == 2) {
  145 + c = Cat<int64_t>(allocator_, buf, 0);
  146 + } else {
  147 + c = Cat(allocator_, buf, 0);
  148 + }
  149 +
  150 + ans.push_back(std::move(c));
  151 + }
  152 +
  153 + return ans;
  154 + }
  155 +
  156 + std::vector<std::vector<Ort::Value>> UnStackStates(
  157 + std::vector<Ort::Value> states) const {
  158 + assert(states.size() == 3);
  159 +
  160 + std::vector<std::vector<Ort::Value>> ans;
  161 +
  162 + auto shape = states[0].GetTensorTypeAndShapeInfo().GetShape();
  163 + int32_t batch_size = shape[0];
  164 + ans.resize(batch_size);
  165 +
  166 + if (batch_size == 1) {
  167 + ans[0] = std::move(states);
  168 + return ans;
  169 + }
  170 +
  171 + for (int32_t i = 0; i != 3; ++i) {
  172 + std::vector<Ort::Value> v;
  173 + if (i == 2) {
  174 + v = Unbind<int64_t>(allocator_, &states[i], 0);
  175 + } else {
  176 + v = Unbind(allocator_, &states[i], 0);
  177 + }
  178 +
  179 + assert(v.size() == batch_size);
  180 +
  181 + for (int32_t b = 0; b != batch_size; ++b) {
  182 + ans[b].push_back(std::move(v[b]));
  183 + }
  184 + }
  185 +
  186 + return ans;
  187 + }
  188 +
  189 + private:
  190 + void Init(void *model_data, size_t model_data_length) {
  191 + sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
  192 + sess_opts_);
  193 +
  194 + GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
  195 +
  196 + GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
  197 +
  198 + // get meta data
  199 + Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
  200 + if (config_.debug) {
  201 + std::ostringstream os;
  202 + PrintModelMetadata(os, meta_data);
  203 + SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
  204 + }
  205 +
  206 + Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
  207 + SHERPA_ONNX_READ_META_DATA(window_size_, "window_size");
  208 + SHERPA_ONNX_READ_META_DATA(chunk_shift_, "chunk_shift");
  209 + SHERPA_ONNX_READ_META_DATA(subsampling_factor_, "subsampling_factor");
  210 + SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
  211 + SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim1_,
  212 + "cache_last_channel_dim1");
  213 + SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim2_,
  214 + "cache_last_channel_dim2");
  215 + SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim3_,
  216 + "cache_last_channel_dim3");
  217 + SHERPA_ONNX_READ_META_DATA(cache_last_time_dim1_, "cache_last_time_dim1");
  218 + SHERPA_ONNX_READ_META_DATA(cache_last_time_dim2_, "cache_last_time_dim2");
  219 + SHERPA_ONNX_READ_META_DATA(cache_last_time_dim3_, "cache_last_time_dim3");
  220 +
  221 + // need to increase by 1 since the blank token is not included in computing
  222 + // vocab_size in NeMo.
  223 + vocab_size_ += 1;
  224 +
  225 + InitStates();
  226 + }
  227 +
  228 + void InitStates() {
  229 + std::array<int64_t, 4> cache_last_channel_shape{1, cache_last_channel_dim1_,
  230 + cache_last_channel_dim2_,
  231 + cache_last_channel_dim3_};
  232 +
  233 + cache_last_channel_ = Ort::Value::CreateTensor<float>(
  234 + allocator_, cache_last_channel_shape.data(),
  235 + cache_last_channel_shape.size());
  236 +
  237 + Fill<float>(&cache_last_channel_, 0);
  238 +
  239 + std::array<int64_t, 4> cache_last_time_shape{
  240 + 1, cache_last_time_dim1_, cache_last_time_dim2_, cache_last_time_dim3_};
  241 +
  242 + cache_last_time_ = Ort::Value::CreateTensor<float>(
  243 + allocator_, cache_last_time_shape.data(), cache_last_time_shape.size());
  244 +
  245 + Fill<float>(&cache_last_time_, 0);
  246 +
  247 + int64_t shape = 1;
  248 + cache_last_channel_len_ =
  249 + Ort::Value::CreateTensor<int64_t>(allocator_, &shape, 1);
  250 +
  251 + cache_last_channel_len_.GetTensorMutableData<int64_t>()[0] = 0;
  252 + }
  253 +
  254 + private:
  255 + OnlineModelConfig config_;
  256 + Ort::Env env_;
  257 + Ort::SessionOptions sess_opts_;
  258 + Ort::AllocatorWithDefaultOptions allocator_;
  259 +
  260 + std::unique_ptr<Ort::Session> sess_;
  261 +
  262 + std::vector<std::string> input_names_;
  263 + std::vector<const char *> input_names_ptr_;
  264 +
  265 + std::vector<std::string> output_names_;
  266 + std::vector<const char *> output_names_ptr_;
  267 +
  268 + int32_t window_size_;
  269 + int32_t chunk_shift_;
  270 + int32_t subsampling_factor_;
  271 + int32_t vocab_size_;
  272 + int32_t cache_last_channel_dim1_;
  273 + int32_t cache_last_channel_dim2_;
  274 + int32_t cache_last_channel_dim3_;
  275 + int32_t cache_last_time_dim1_;
  276 + int32_t cache_last_time_dim2_;
  277 + int32_t cache_last_time_dim3_;
  278 +
  279 + Ort::Value cache_last_channel_{nullptr};
  280 + Ort::Value cache_last_time_{nullptr};
  281 + Ort::Value cache_last_channel_len_{nullptr};
  282 +};
  283 +
  284 +OnlineNeMoCtcModel::OnlineNeMoCtcModel(const OnlineModelConfig &config)
  285 + : impl_(std::make_unique<Impl>(config)) {}
  286 +
  287 +#if __ANDROID_API__ >= 9
  288 +OnlineNeMoCtcModel::OnlineNeMoCtcModel(AAssetManager *mgr,
  289 + const OnlineModelConfig &config)
  290 + : impl_(std::make_unique<Impl>(mgr, config)) {}
  291 +#endif
  292 +
  293 +OnlineNeMoCtcModel::~OnlineNeMoCtcModel() = default;
  294 +
  295 +std::vector<Ort::Value> OnlineNeMoCtcModel::Forward(
  296 + Ort::Value x, std::vector<Ort::Value> states) const {
  297 + return impl_->Forward(std::move(x), std::move(states));
  298 +}
  299 +
  300 +int32_t OnlineNeMoCtcModel::VocabSize() const { return impl_->VocabSize(); }
  301 +
  302 +int32_t OnlineNeMoCtcModel::ChunkLength() const { return impl_->ChunkLength(); }
  303 +
  304 +int32_t OnlineNeMoCtcModel::ChunkShift() const { return impl_->ChunkShift(); }
  305 +
  306 +OrtAllocator *OnlineNeMoCtcModel::Allocator() const {
  307 + return impl_->Allocator();
  308 +}
  309 +
  310 +std::vector<Ort::Value> OnlineNeMoCtcModel::GetInitStates() const {
  311 + return impl_->GetInitStates();
  312 +}
  313 +
  314 +std::vector<Ort::Value> OnlineNeMoCtcModel::StackStates(
  315 + std::vector<std::vector<Ort::Value>> states) const {
  316 + return impl_->StackStates(std::move(states));
  317 +}
  318 +
  319 +std::vector<std::vector<Ort::Value>> OnlineNeMoCtcModel::UnStackStates(
  320 + std::vector<Ort::Value> states) const {
  321 + return impl_->UnStackStates(std::move(states));
  322 +}
  323 +
  324 +} // namespace sherpa_onnx
  1 +// sherpa-onnx/csrc/online-nemo-ctc-model.h
  2 +//
  3 +// Copyright (c) 2024 Xiaomi Corporation
  4 +#ifndef SHERPA_ONNX_CSRC_ONLINE_NEMO_CTC_MODEL_H_
  5 +#define SHERPA_ONNX_CSRC_ONLINE_NEMO_CTC_MODEL_H_
  6 +
  7 +#include <memory>
  8 +#include <utility>
  9 +#include <vector>
  10 +
  11 +#if __ANDROID_API__ >= 9
  12 +#include "android/asset_manager.h"
  13 +#include "android/asset_manager_jni.h"
  14 +#endif
  15 +
  16 +#include "onnxruntime_cxx_api.h" // NOLINT
  17 +#include "sherpa-onnx/csrc/online-ctc-model.h"
  18 +#include "sherpa-onnx/csrc/online-model-config.h"
  19 +
  20 +namespace sherpa_onnx {
  21 +
  22 +class OnlineNeMoCtcModel : public OnlineCtcModel {
  23 + public:
  24 + explicit OnlineNeMoCtcModel(const OnlineModelConfig &config);
  25 +
  26 +#if __ANDROID_API__ >= 9
  27 + OnlineNeMoCtcModel(AAssetManager *mgr, const OnlineModelConfig &config);
  28 +#endif
  29 +
  30 + ~OnlineNeMoCtcModel() override;
  31 +
  32 + // A list of 3 tensors:
  33 + // - cache_last_channel
  34 + // - cache_last_time
  35 + // - cache_last_channel_len
  36 + std::vector<Ort::Value> GetInitStates() const override;
  37 +
  38 + std::vector<Ort::Value> StackStates(
  39 + std::vector<std::vector<Ort::Value>> states) const override;
  40 +
  41 + std::vector<std::vector<Ort::Value>> UnStackStates(
  42 + std::vector<Ort::Value> states) const override;
  43 +
  44 + /**
  45 + *
  46 + * @param x A 3-D tensor of shape (N, T, C). N has to be 1.
  47 + * @param states It is from GetInitStates() or returned from this method.
  48 + *
  49 + * @return Return a list of tensors
  50 + * - ans[0] contains log_probs, of shape (N, T, C)
  51 + * - ans[1:] contains next_states
  52 + */
  53 + std::vector<Ort::Value> Forward(
  54 + Ort::Value x, std::vector<Ort::Value> states) const override;
  55 +
  56 + /** Return the vocabulary size of the model
  57 + */
  58 + int32_t VocabSize() const override;
  59 +
  60 + /** Return an allocator for allocating memory
  61 + */
  62 + OrtAllocator *Allocator() const override;
  63 +
  64 + // The model accepts this number of frames before subsampling as input
  65 + int32_t ChunkLength() const override;
  66 +
  67 + // Similar to frame_shift in feature extractor, after processing
  68 + // ChunkLength() frames, we advance by ChunkShift() frames
  69 + // before we process the next chunk.
  70 + int32_t ChunkShift() const override;
  71 +
  72 + bool SupportBatchProcessing() const override { return true; }
  73 +
  74 + private:
  75 + class Impl;
  76 + std::unique_ptr<Impl> impl_;
  77 +};
  78 +
  79 +} // namespace sherpa_onnx
  80 +
  81 +#endif // SHERPA_ONNX_CSRC_ONLINE_NEMO_CTC_MODEL_H_
@@ -21,7 +21,8 @@ std::unique_ptr<OnlineRecognizerImpl> OnlineRecognizerImpl::Create( @@ -21,7 +21,8 @@ std::unique_ptr<OnlineRecognizerImpl> OnlineRecognizerImpl::Create(
21 } 21 }
22 22
23 if (!config.model_config.wenet_ctc.model.empty() || 23 if (!config.model_config.wenet_ctc.model.empty() ||
24 - !config.model_config.zipformer2_ctc.model.empty()) { 24 + !config.model_config.zipformer2_ctc.model.empty() ||
  25 + !config.model_config.nemo_ctc.model.empty()) {
25 return std::make_unique<OnlineRecognizerCtcImpl>(config); 26 return std::make_unique<OnlineRecognizerCtcImpl>(config);
26 } 27 }
27 28
@@ -41,7 +42,8 @@ std::unique_ptr<OnlineRecognizerImpl> OnlineRecognizerImpl::Create( @@ -41,7 +42,8 @@ std::unique_ptr<OnlineRecognizerImpl> OnlineRecognizerImpl::Create(
41 } 42 }
42 43
43 if (!config.model_config.wenet_ctc.model.empty() || 44 if (!config.model_config.wenet_ctc.model.empty() ||
44 - !config.model_config.zipformer2_ctc.model.empty()) { 45 + !config.model_config.zipformer2_ctc.model.empty() ||
  46 + !config.model_config.nemo_ctc.model.empty()) {
45 return std::make_unique<OnlineRecognizerCtcImpl>(mgr, config); 47 return std::make_unique<OnlineRecognizerCtcImpl>(mgr, config);
46 } 48 }
47 49
@@ -23,6 +23,7 @@ set(srcs @@ -23,6 +23,7 @@ set(srcs
23 online-ctc-fst-decoder-config.cc 23 online-ctc-fst-decoder-config.cc
24 online-lm-config.cc 24 online-lm-config.cc
25 online-model-config.cc 25 online-model-config.cc
  26 + online-nemo-ctc-model-config.cc
26 online-paraformer-model-config.cc 27 online-paraformer-model-config.cc
27 online-recognizer.cc 28 online-recognizer.cc
28 online-stream.cc 29 online-stream.cc
@@ -9,6 +9,7 @@ @@ -9,6 +9,7 @@
9 9
10 #include "sherpa-onnx/csrc/online-model-config.h" 10 #include "sherpa-onnx/csrc/online-model-config.h"
11 #include "sherpa-onnx/csrc/online-transducer-model-config.h" 11 #include "sherpa-onnx/csrc/online-transducer-model-config.h"
  12 +#include "sherpa-onnx/python/csrc/online-nemo-ctc-model-config.h"
12 #include "sherpa-onnx/python/csrc/online-paraformer-model-config.h" 13 #include "sherpa-onnx/python/csrc/online-paraformer-model-config.h"
13 #include "sherpa-onnx/python/csrc/online-transducer-model-config.h" 14 #include "sherpa-onnx/python/csrc/online-transducer-model-config.h"
14 #include "sherpa-onnx/python/csrc/online-wenet-ctc-model-config.h" 15 #include "sherpa-onnx/python/csrc/online-wenet-ctc-model-config.h"
@@ -21,26 +22,30 @@ void PybindOnlineModelConfig(py::module *m) { @@ -21,26 +22,30 @@ void PybindOnlineModelConfig(py::module *m) {
21 PybindOnlineParaformerModelConfig(m); 22 PybindOnlineParaformerModelConfig(m);
22 PybindOnlineWenetCtcModelConfig(m); 23 PybindOnlineWenetCtcModelConfig(m);
23 PybindOnlineZipformer2CtcModelConfig(m); 24 PybindOnlineZipformer2CtcModelConfig(m);
  25 + PybindOnlineNeMoCtcModelConfig(m);
24 26
25 using PyClass = OnlineModelConfig; 27 using PyClass = OnlineModelConfig;
26 py::class_<PyClass>(*m, "OnlineModelConfig") 28 py::class_<PyClass>(*m, "OnlineModelConfig")
27 .def(py::init<const OnlineTransducerModelConfig &, 29 .def(py::init<const OnlineTransducerModelConfig &,
28 const OnlineParaformerModelConfig &, 30 const OnlineParaformerModelConfig &,
29 const OnlineWenetCtcModelConfig &, 31 const OnlineWenetCtcModelConfig &,
30 - const OnlineZipformer2CtcModelConfig &, const std::string &, 32 + const OnlineZipformer2CtcModelConfig &,
  33 + const OnlineNeMoCtcModelConfig &, const std::string &,
31 int32_t, int32_t, bool, const std::string &, 34 int32_t, int32_t, bool, const std::string &,
32 const std::string &>(), 35 const std::string &>(),
33 py::arg("transducer") = OnlineTransducerModelConfig(), 36 py::arg("transducer") = OnlineTransducerModelConfig(),
34 py::arg("paraformer") = OnlineParaformerModelConfig(), 37 py::arg("paraformer") = OnlineParaformerModelConfig(),
35 py::arg("wenet_ctc") = OnlineWenetCtcModelConfig(), 38 py::arg("wenet_ctc") = OnlineWenetCtcModelConfig(),
36 py::arg("zipformer2_ctc") = OnlineZipformer2CtcModelConfig(), 39 py::arg("zipformer2_ctc") = OnlineZipformer2CtcModelConfig(),
37 - py::arg("tokens"), py::arg("num_threads"), py::arg("warm_up") = 0, 40 + py::arg("nemo_ctc") = OnlineNeMoCtcModelConfig(), py::arg("tokens"),
  41 + py::arg("num_threads"), py::arg("warm_up") = 0,
38 py::arg("debug") = false, py::arg("provider") = "cpu", 42 py::arg("debug") = false, py::arg("provider") = "cpu",
39 py::arg("model_type") = "") 43 py::arg("model_type") = "")
40 .def_readwrite("transducer", &PyClass::transducer) 44 .def_readwrite("transducer", &PyClass::transducer)
41 .def_readwrite("paraformer", &PyClass::paraformer) 45 .def_readwrite("paraformer", &PyClass::paraformer)
42 .def_readwrite("wenet_ctc", &PyClass::wenet_ctc) 46 .def_readwrite("wenet_ctc", &PyClass::wenet_ctc)
43 .def_readwrite("zipformer2_ctc", &PyClass::zipformer2_ctc) 47 .def_readwrite("zipformer2_ctc", &PyClass::zipformer2_ctc)
  48 + .def_readwrite("nemo_ctc", &PyClass::nemo_ctc)
44 .def_readwrite("tokens", &PyClass::tokens) 49 .def_readwrite("tokens", &PyClass::tokens)
45 .def_readwrite("num_threads", &PyClass::num_threads) 50 .def_readwrite("num_threads", &PyClass::num_threads)
46 .def_readwrite("debug", &PyClass::debug) 51 .def_readwrite("debug", &PyClass::debug)
  1 +// sherpa-onnx/python/csrc/online-nemo-ctc-model-config.cc
  2 +//
  3 +// Copyright (c) 2024 Xiaomi Corporation
  4 +
  5 +#include "sherpa-onnx/python/csrc/online-nemo-ctc-model-config.h"
  6 +
  7 +#include <string>
  8 +#include <vector>
  9 +
  10 +#include "sherpa-onnx/csrc/online-nemo-ctc-model-config.h"
  11 +
  12 +namespace sherpa_onnx {
  13 +
  14 +void PybindOnlineNeMoCtcModelConfig(py::module *m) {
  15 + using PyClass = OnlineNeMoCtcModelConfig;
  16 + py::class_<PyClass>(*m, "OnlineNeMoCtcModelConfig")
  17 + .def(py::init<const std::string &>(), py::arg("model"))
  18 + .def_readwrite("model", &PyClass::model)
  19 + .def("__str__", &PyClass::ToString);
  20 +}
  21 +
  22 +} // namespace sherpa_onnx
  1 +// sherpa-onnx/python/csrc/online-nemo-ctc-model-config.h
  2 +//
  3 +// Copyright (c) 2024 Xiaomi Corporation
  4 +
  5 +#ifndef SHERPA_ONNX_PYTHON_CSRC_ONLINE_NEMO_CTC_MODEL_CONFIG_H_
  6 +#define SHERPA_ONNX_PYTHON_CSRC_ONLINE_NEMO_CTC_MODEL_CONFIG_H_
  7 +
  8 +#include "sherpa-onnx/python/csrc/sherpa-onnx.h"
  9 +
  10 +namespace sherpa_onnx {
  11 +
  12 +void PybindOnlineNeMoCtcModelConfig(py::module *m);
  13 +
  14 +}
  15 +
  16 +#endif // SHERPA_ONNX_PYTHON_CSRC_ONLINE_NEMO_CTC_MODEL_CONFIG_H_
@@ -42,6 +42,8 @@ static void PybindOnlineRecognizerResult(py::module *m) { @@ -42,6 +42,8 @@ static void PybindOnlineRecognizerResult(py::module *m) {
42 "segment", [](PyClass &self) -> int32_t { return self.segment; }) 42 "segment", [](PyClass &self) -> int32_t { return self.segment; })
43 .def_property_readonly( 43 .def_property_readonly(
44 "is_final", [](PyClass &self) -> bool { return self.is_final; }) 44 "is_final", [](PyClass &self) -> bool { return self.is_final; })
  45 + .def("__str__", &PyClass::AsJsonString,
  46 + py::call_guard<py::gil_scoped_release>())
45 .def("as_json_string", &PyClass::AsJsonString, 47 .def("as_json_string", &PyClass::AsJsonString,
46 py::call_guard<py::gil_scoped_release>()); 48 py::call_guard<py::gil_scoped_release>());
47 } 49 }
@@ -50,29 +52,17 @@ static void PybindOnlineRecognizerConfig(py::module *m) { @@ -50,29 +52,17 @@ static void PybindOnlineRecognizerConfig(py::module *m) {
50 using PyClass = OnlineRecognizerConfig; 52 using PyClass = OnlineRecognizerConfig;
51 py::class_<PyClass>(*m, "OnlineRecognizerConfig") 53 py::class_<PyClass>(*m, "OnlineRecognizerConfig")
52 .def( 54 .def(
53 - py::init<const FeatureExtractorConfig &,  
54 - const OnlineModelConfig &,  
55 - const OnlineLMConfig &,  
56 - const EndpointConfig &,  
57 - const OnlineCtcFstDecoderConfig &,  
58 - bool,  
59 - const std::string &,  
60 - int32_t,  
61 - const std::string &,  
62 - float,  
63 - float,  
64 - float>(),  
65 - py::arg("feat_config"),  
66 - py::arg("model_config"), 55 + py::init<const FeatureExtractorConfig &, const OnlineModelConfig &,
  56 + const OnlineLMConfig &, const EndpointConfig &,
  57 + const OnlineCtcFstDecoderConfig &, bool, const std::string &,
  58 + int32_t, const std::string &, float, float, float>(),
  59 + py::arg("feat_config"), py::arg("model_config"),
67 py::arg("lm_config") = OnlineLMConfig(), 60 py::arg("lm_config") = OnlineLMConfig(),
68 py::arg("endpoint_config") = EndpointConfig(), 61 py::arg("endpoint_config") = EndpointConfig(),
69 py::arg("ctc_fst_decoder_config") = OnlineCtcFstDecoderConfig(), 62 py::arg("ctc_fst_decoder_config") = OnlineCtcFstDecoderConfig(),
70 - py::arg("enable_endpoint"),  
71 - py::arg("decoding_method"),  
72 - py::arg("max_active_paths") = 4,  
73 - py::arg("hotwords_file") = "",  
74 - py::arg("hotwords_score") = 0,  
75 - py::arg("blank_penalty") = 0.0, 63 + py::arg("enable_endpoint"), py::arg("decoding_method"),
  64 + py::arg("max_active_paths") = 4, py::arg("hotwords_file") = "",
  65 + py::arg("hotwords_score") = 0, py::arg("blank_penalty") = 0.0,
76 py::arg("temperature_scale") = 2.0) 66 py::arg("temperature_scale") = 2.0)
77 .def_readwrite("feat_config", &PyClass::feat_config) 67 .def_readwrite("feat_config", &PyClass::feat_config)
78 .def_readwrite("model_config", &PyClass::model_config) 68 .def_readwrite("model_config", &PyClass::model_config)
@@ -12,9 +12,11 @@ from _sherpa_onnx import ( @@ -12,9 +12,11 @@ from _sherpa_onnx import (
12 from _sherpa_onnx import OnlineRecognizer as _Recognizer 12 from _sherpa_onnx import OnlineRecognizer as _Recognizer
13 from _sherpa_onnx import ( 13 from _sherpa_onnx import (
14 OnlineRecognizerConfig, 14 OnlineRecognizerConfig,
  15 + OnlineRecognizerResult,
15 OnlineStream, 16 OnlineStream,
16 OnlineTransducerModelConfig, 17 OnlineTransducerModelConfig,
17 OnlineWenetCtcModelConfig, 18 OnlineWenetCtcModelConfig,
  19 + OnlineNeMoCtcModelConfig,
18 OnlineZipformer2CtcModelConfig, 20 OnlineZipformer2CtcModelConfig,
19 OnlineCtcFstDecoderConfig, 21 OnlineCtcFstDecoderConfig,
20 ) 22 )
@@ -59,6 +61,7 @@ class OnlineRecognizer(object): @@ -59,6 +61,7 @@ class OnlineRecognizer(object):
59 lm: str = "", 61 lm: str = "",
60 lm_scale: float = 0.1, 62 lm_scale: float = 0.1,
61 temperature_scale: float = 2.0, 63 temperature_scale: float = 2.0,
  64 + debug: bool = False,
62 ): 65 ):
63 """ 66 """
64 Please refer to 67 Please refer to
@@ -154,6 +157,7 @@ class OnlineRecognizer(object): @@ -154,6 +157,7 @@ class OnlineRecognizer(object):
154 num_threads=num_threads, 157 num_threads=num_threads,
155 provider=provider, 158 provider=provider,
156 model_type=model_type, 159 model_type=model_type,
  160 + debug=debug,
157 ) 161 )
158 162
159 feat_config = FeatureExtractorConfig( 163 feat_config = FeatureExtractorConfig(
@@ -220,6 +224,7 @@ class OnlineRecognizer(object): @@ -220,6 +224,7 @@ class OnlineRecognizer(object):
220 rule3_min_utterance_length: float = 20.0, 224 rule3_min_utterance_length: float = 20.0,
221 decoding_method: str = "greedy_search", 225 decoding_method: str = "greedy_search",
222 provider: str = "cpu", 226 provider: str = "cpu",
  227 + debug: bool = False,
223 ): 228 ):
224 """ 229 """
225 Please refer to 230 Please refer to
@@ -283,6 +288,7 @@ class OnlineRecognizer(object): @@ -283,6 +288,7 @@ class OnlineRecognizer(object):
283 num_threads=num_threads, 288 num_threads=num_threads,
284 provider=provider, 289 provider=provider,
285 model_type="paraformer", 290 model_type="paraformer",
  291 + debug=debug,
286 ) 292 )
287 293
288 feat_config = FeatureExtractorConfig( 294 feat_config = FeatureExtractorConfig(
@@ -324,6 +330,7 @@ class OnlineRecognizer(object): @@ -324,6 +330,7 @@ class OnlineRecognizer(object):
324 ctc_graph: str = "", 330 ctc_graph: str = "",
325 ctc_max_active: int = 3000, 331 ctc_max_active: int = 3000,
326 provider: str = "cpu", 332 provider: str = "cpu",
  333 + debug: bool = False,
327 ): 334 ):
328 """ 335 """
329 Please refer to 336 Please refer to
@@ -386,6 +393,7 @@ class OnlineRecognizer(object): @@ -386,6 +393,7 @@ class OnlineRecognizer(object):
386 tokens=tokens, 393 tokens=tokens,
387 num_threads=num_threads, 394 num_threads=num_threads,
388 provider=provider, 395 provider=provider,
  396 + debug=debug,
389 ) 397 )
390 398
391 feat_config = FeatureExtractorConfig( 399 feat_config = FeatureExtractorConfig(
@@ -418,6 +426,106 @@ class OnlineRecognizer(object): @@ -418,6 +426,106 @@ class OnlineRecognizer(object):
418 return self 426 return self
419 427
420 @classmethod 428 @classmethod
  429 + def from_nemo_ctc(
  430 + cls,
  431 + tokens: str,
  432 + model: str,
  433 + num_threads: int = 2,
  434 + sample_rate: float = 16000,
  435 + feature_dim: int = 80,
  436 + enable_endpoint_detection: bool = False,
  437 + rule1_min_trailing_silence: float = 2.4,
  438 + rule2_min_trailing_silence: float = 1.2,
  439 + rule3_min_utterance_length: float = 20.0,
  440 + decoding_method: str = "greedy_search",
  441 + provider: str = "cpu",
  442 + debug: bool = False,
  443 + ):
  444 + """
  445 + Please refer to
  446 + `<https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models>`_
  447 + to download pre-trained models.
  448 +
  449 + Args:
  450 + tokens:
  451 + Path to ``tokens.txt``. Each line in ``tokens.txt`` contains two
  452 + columns::
  453 +
  454 + symbol integer_id
  455 +
  456 + model:
  457 + Path to ``model.onnx``.
  458 + num_threads:
  459 + Number of threads for neural network computation.
  460 + sample_rate:
  461 + Sample rate of the training data used to train the model.
  462 + feature_dim:
  463 + Dimension of the feature used to train the model.
  464 + enable_endpoint_detection:
  465 + True to enable endpoint detection. False to disable endpoint
  466 + detection.
  467 + rule1_min_trailing_silence:
  468 + Used only when enable_endpoint_detection is True. If the duration
  469 + of trailing silence in seconds is larger than this value, we assume
  470 + an endpoint is detected.
  471 + rule2_min_trailing_silence:
  472 + Used only when enable_endpoint_detection is True. If we have decoded
  473 + something that is nonsilence and if the duration of trailing silence
  474 + in seconds is larger than this value, we assume an endpoint is
  475 + detected.
  476 + rule3_min_utterance_length:
  477 + Used only when enable_endpoint_detection is True. If the utterance
  478 + length in seconds is larger than this value, we assume an endpoint
  479 + is detected.
  480 + decoding_method:
  481 + The only valid value is greedy_search.
  482 + provider:
  483 + onnxruntime execution providers. Valid values are: cpu, cuda, coreml.
  484 + debug:
  485 + True to show meta data in the model.
  486 + """
  487 + self = cls.__new__(cls)
  488 + _assert_file_exists(tokens)
  489 + _assert_file_exists(model)
  490 +
  491 + assert num_threads > 0, num_threads
  492 +
  493 + nemo_ctc_config = OnlineNeMoCtcModelConfig(
  494 + model=model,
  495 + )
  496 +
  497 + model_config = OnlineModelConfig(
  498 + nemo_ctc=nemo_ctc_config,
  499 + tokens=tokens,
  500 + num_threads=num_threads,
  501 + provider=provider,
  502 + debug=debug,
  503 + )
  504 +
  505 + feat_config = FeatureExtractorConfig(
  506 + sampling_rate=sample_rate,
  507 + feature_dim=feature_dim,
  508 + )
  509 +
  510 + endpoint_config = EndpointConfig(
  511 + rule1_min_trailing_silence=rule1_min_trailing_silence,
  512 + rule2_min_trailing_silence=rule2_min_trailing_silence,
  513 + rule3_min_utterance_length=rule3_min_utterance_length,
  514 + )
  515 +
  516 + recognizer_config = OnlineRecognizerConfig(
  517 + feat_config=feat_config,
  518 + model_config=model_config,
  519 + endpoint_config=endpoint_config,
  520 + enable_endpoint=enable_endpoint_detection,
  521 + decoding_method=decoding_method,
  522 + )
  523 +
  524 + self.recognizer = _Recognizer(recognizer_config)
  525 + self.config = recognizer_config
  526 + return self
  527 +
  528 + @classmethod
421 def from_wenet_ctc( 529 def from_wenet_ctc(
422 cls, 530 cls,
423 tokens: str, 531 tokens: str,
@@ -433,6 +541,7 @@ class OnlineRecognizer(object): @@ -433,6 +541,7 @@ class OnlineRecognizer(object):
433 rule3_min_utterance_length: float = 20.0, 541 rule3_min_utterance_length: float = 20.0,
434 decoding_method: str = "greedy_search", 542 decoding_method: str = "greedy_search",
435 provider: str = "cpu", 543 provider: str = "cpu",
  544 + debug: bool = False,
436 ): 545 ):
437 """ 546 """
438 Please refer to 547 Please refer to
@@ -497,6 +606,7 @@ class OnlineRecognizer(object): @@ -497,6 +606,7 @@ class OnlineRecognizer(object):
497 tokens=tokens, 606 tokens=tokens,
498 num_threads=num_threads, 607 num_threads=num_threads,
499 provider=provider, 608 provider=provider,
  609 + debug=debug,
500 ) 610 )
501 611
502 feat_config = FeatureExtractorConfig( 612 feat_config = FeatureExtractorConfig(
@@ -537,6 +647,9 @@ class OnlineRecognizer(object): @@ -537,6 +647,9 @@ class OnlineRecognizer(object):
537 def is_ready(self, s: OnlineStream) -> bool: 647 def is_ready(self, s: OnlineStream) -> bool:
538 return self.recognizer.is_ready(s) 648 return self.recognizer.is_ready(s)
539 649
  650 + def get_result_all(self, s: OnlineStream) -> OnlineRecognizerResult:
  651 + return self.recognizer.get_result(s)
  652 +
540 def get_result(self, s: OnlineStream) -> str: 653 def get_result(self, s: OnlineStream) -> str:
541 return self.recognizer.get_result(s).text.strip() 654 return self.recognizer.get_result(s).text.strip()
542 655