Fangjun Kuang
Committed by GitHub

Add C++ example for streaming ASR with SenseVoice. (#2199)

... ... @@ -27,6 +27,17 @@ target_link_libraries(moonshine-cxx-api sherpa-onnx-cxx-api)
add_executable(sense-voice-cxx-api ./sense-voice-cxx-api.cc)
target_link_libraries(sense-voice-cxx-api sherpa-onnx-cxx-api)
if(SHERPA_ONNX_ENABLE_PORTAUDIO)
add_executable(sense-voice-simulate-streaming-microphone-cxx-api
./sense-voice-simulate-streaming-microphone-cxx-api.cc
${CMAKE_CURRENT_LIST_DIR}/../sherpa-onnx/csrc/microphone.cc
)
target_link_libraries(sense-voice-simulate-streaming-microphone-cxx-api
sherpa-onnx-cxx-api
portaudio_static
)
endif()
add_executable(sense-voice-with-hr-cxx-api ./sense-voice-with-hr-cxx-api.cc)
target_link_libraries(sense-voice-with-hr-cxx-api sherpa-onnx-cxx-api)
... ...
... ... @@ -33,8 +33,8 @@ int32_t main() {
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OfflineRecognizer recongizer = OfflineRecognizer::Create(config);
if (!recongizer.Get()) {
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -49,13 +49,13 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OfflineStream stream = recongizer.CreateStream();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recongizer.Decode(&stream);
recognizer.Decode(&stream);
OfflineRecognizerResult result = recongizer.GetResult(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
... ... @@ -32,8 +32,8 @@ int32_t main() {
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OfflineRecognizer recongizer = OfflineRecognizer::Create(config);
if (!recongizer.Get()) {
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -50,13 +50,13 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OfflineStream stream = recongizer.CreateStream();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recongizer.Decode(&stream);
recognizer.Decode(&stream);
OfflineRecognizerResult result = recongizer.GetResult(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
... ... @@ -36,8 +36,8 @@ int32_t main() {
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OfflineRecognizer recongizer = OfflineRecognizer::Create(config);
if (!recongizer.Get()) {
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -54,13 +54,13 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OfflineStream stream = recongizer.CreateStream();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recongizer.Decode(&stream);
recognizer.Decode(&stream);
OfflineRecognizerResult result = recongizer.GetResult(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
... ... @@ -32,8 +32,8 @@ int32_t main() {
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OfflineRecognizer recongizer = OfflineRecognizer::Create(config);
if (!recongizer.Get()) {
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -51,13 +51,13 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OfflineStream stream = recongizer.CreateStream();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recongizer.Decode(&stream);
recognizer.Decode(&stream);
OfflineRecognizerResult result = recongizer.GetResult(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
// cxx-api-examples/sense-voice-simulate-streaming-microphone-cxx-api.cc
// Copyright (c) 2025 Xiaomi Corporation
//
// This file demonstrates how to use sense voice with sherpa-onnx's C++ API
// for streaming speech recognition from a microphone.
//
// clang-format off
//
// wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
//
// wget https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
// tar xvf sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
// rm sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2
//
// clang-format on
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <chrono> // NOLINT
#include <condition_variable> // NOLINT
#include <iostream>
#include <mutex> // NOLINT
#include <queue>
#include <vector>
#include "portaudio.h" // NOLINT
#include "sherpa-display.h" // NOLINT
#include "sherpa-onnx/c-api/cxx-api.h"
#include "sherpa-onnx/csrc/microphone.h"
std::queue<std::vector<float>> samples_queue;
std::condition_variable condition_variable;
std::mutex mutex;
bool stop = false;
static void Handler(int32_t /*sig*/) {
stop = true;
condition_variable.notify_one();
fprintf(stderr, "\nCaught Ctrl + C. Exiting...\n");
}
static int32_t RecordCallback(const void *input_buffer,
void * /*output_buffer*/,
unsigned long frames_per_buffer, // NOLINT
const PaStreamCallbackTimeInfo * /*time_info*/,
PaStreamCallbackFlags /*status_flags*/,
void * /*user_data*/) {
std::lock_guard<std::mutex> lock(mutex);
samples_queue.emplace(
reinterpret_cast<const float *>(input_buffer),
reinterpret_cast<const float *>(input_buffer) + frames_per_buffer);
condition_variable.notify_one();
return stop ? paComplete : paContinue;
}
static sherpa_onnx::cxx::VoiceActivityDetector CreateVad() {
using namespace sherpa_onnx::cxx; // NOLINT
VadModelConfig config;
config.silero_vad.model = "./silero_vad.onnx";
config.silero_vad.threshold = 0.5;
config.silero_vad.min_silence_duration = 0.1;
config.silero_vad.min_speech_duration = 0.25;
config.silero_vad.max_speech_duration = 8;
config.sample_rate = 16000;
config.debug = false;
VoiceActivityDetector vad = VoiceActivityDetector::Create(config, 20);
if (!vad.Get()) {
std::cerr << "Failed to create VAD. Please check your config\n";
exit(-1);
}
return vad;
}
static sherpa_onnx::cxx::OfflineRecognizer CreateOfflineRecognizer() {
using namespace sherpa_onnx::cxx; // NOLINT
OfflineRecognizerConfig config;
config.model_config.sense_voice.model =
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx";
config.model_config.sense_voice.use_itn = false;
config.model_config.sense_voice.language = "auto";
config.model_config.tokens =
"./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt";
config.model_config.num_threads = 2;
config.model_config.debug = false;
std::cout << "Loading model\n";
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
exit(-1);
}
std::cout << "Loading model done\n";
return recognizer;
}
int32_t main() {
signal(SIGINT, Handler);
using namespace sherpa_onnx::cxx; // NOLINT
auto vad = CreateVad();
auto recognizer = CreateOfflineRecognizer();
sherpa_onnx::Microphone mic;
PaDeviceIndex num_devices = Pa_GetDeviceCount();
std::cout << "Num devices: " << num_devices << "\n";
if (num_devices == 0) {
std::cerr << " If you are using Linux, please try "
"./build/bin/sense-voice-simulate-streaming-alsa-cxx-api\n";
return -1;
}
int32_t device_index = Pa_GetDefaultInputDevice();
const char *pDeviceIndex = std::getenv("SHERPA_ONNX_MIC_DEVICE");
if (pDeviceIndex) {
fprintf(stderr, "Use specified device: %s\n", pDeviceIndex);
device_index = atoi(pDeviceIndex);
}
for (int32_t i = 0; i != num_devices; ++i) {
const PaDeviceInfo *info = Pa_GetDeviceInfo(i);
fprintf(stderr, " %s %d %s\n", (i == device_index) ? "*" : " ", i,
info->name);
}
PaStreamParameters param;
param.device = device_index;
fprintf(stderr, "Use device: %d\n", param.device);
const PaDeviceInfo *info = Pa_GetDeviceInfo(param.device);
fprintf(stderr, " Name: %s\n", info->name);
fprintf(stderr, " Max input channels: %d\n", info->maxInputChannels);
param.channelCount = 1;
param.sampleFormat = paFloat32;
param.suggestedLatency = info->defaultLowInputLatency;
param.hostApiSpecificStreamInfo = nullptr;
float mic_sample_rate = 16000;
const char *sample_rate_str = std::getenv("SHERPA_ONNX_MIC_SAMPLE_RATE");
if (sample_rate_str) {
fprintf(stderr, "Use sample rate %f for mic\n", mic_sample_rate);
mic_sample_rate = atof(sample_rate_str);
}
float sample_rate = 16000;
LinearResampler resampler;
if (mic_sample_rate != sample_rate) {
float min_freq = std::min(mic_sample_rate, sample_rate);
float lowpass_cutoff = 0.99 * 0.5 * min_freq;
int32_t lowpass_filter_width = 6;
resampler = LinearResampler::Create(mic_sample_rate, sample_rate,
lowpass_cutoff, lowpass_filter_width);
}
PaStream *stream;
PaError err =
Pa_OpenStream(&stream, &param, nullptr, /* &outputParameters, */
mic_sample_rate,
0, // frames per buffer
paClipOff, // we won't output out of range samples
// so don't bother clipping them
RecordCallback, // RecordCallback is run in a separate
// thread created by portaudio
nullptr);
if (err != paNoError) {
fprintf(stderr, "portaudio error: %s\n", Pa_GetErrorText(err));
exit(EXIT_FAILURE);
}
err = Pa_StartStream(stream);
if (err != paNoError) {
fprintf(stderr, "portaudio error: %s\n", Pa_GetErrorText(err));
exit(EXIT_FAILURE);
}
int32_t window_size = 512; // samples, please don't change
int32_t offset = 0;
std::vector<float> buffer;
bool speech_started = false;
auto started_time = std::chrono::steady_clock::now();
SherpaDisplay display;
std::cout << "Started! Please speak\n";
while (!stop) {
{
std::unique_lock<std::mutex> lock(mutex);
while (samples_queue.empty() && !stop) {
condition_variable.wait(lock);
}
const auto &s = samples_queue.front();
if (!resampler.Get()) {
buffer.insert(buffer.end(), s.begin(), s.end());
} else {
auto resampled = resampler.Resample(s.data(), s.size(), false);
buffer.insert(buffer.end(), resampled.begin(), resampled.end());
}
samples_queue.pop();
}
for (; offset + window_size < buffer.size(); offset += window_size) {
vad.AcceptWaveform(buffer.data() + offset, window_size);
if (!speech_started && vad.IsDetected()) {
speech_started = true;
started_time = std::chrono::steady_clock::now();
}
}
if (!speech_started) {
if (buffer.size() > 10 * window_size) {
offset -= buffer.size() - 10 * window_size;
buffer = {buffer.end() - 10 * window_size, buffer.end()};
}
}
auto current_time = std::chrono::steady_clock::now();
const float elapsed_seconds =
std::chrono::duration_cast<std::chrono::milliseconds>(current_time -
started_time)
.count() /
1000.;
if (speech_started && elapsed_seconds > 0.2) {
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(sample_rate, buffer.data(), buffer.size());
recognizer.Decode(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
display.UpdateText(result.text);
display.Display();
started_time = std::chrono::steady_clock::now();
}
while (!vad.IsEmpty()) {
auto segment = vad.Front();
vad.Pop();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(sample_rate, segment.samples.data(),
segment.samples.size());
recognizer.Decode(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
display.UpdateText(result.text);
display.FinalizeCurrentSentence();
display.Display();
buffer.clear();
offset = 0;
speech_started = false;
}
}
err = Pa_CloseStream(stream);
if (err != paNoError) {
fprintf(stderr, "portaudio error: %s\n", Pa_GetErrorText(err));
exit(EXIT_FAILURE);
}
return 0;
}
... ...
... ... @@ -47,8 +47,8 @@ int32_t main() {
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OfflineRecognizer recongizer = OfflineRecognizer::Create(config);
if (!recongizer.Get()) {
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -65,13 +65,13 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OfflineStream stream = recongizer.CreateStream();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recongizer.Decode(&stream);
recognizer.Decode(&stream);
OfflineRecognizerResult result = recongizer.GetResult(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
#pragma once
#include <stdlib.h>
#include <ctime>
#include <iomanip>
#include <sstream>
#include <string>
namespace sherpa_onnx::cxx {
class SherpaDisplay {
public:
void UpdateText(const std::string &text) { current_text_ = text; }
void FinalizeCurrentSentence() {
if (!current_text_.empty() && current_text_[0] != ' ') {
sentences_.push_back({GetCurrentDateTime(), std::move(current_text_)});
}
}
void Display() const {
if (!sentences_.empty() || !current_text_.empty()) {
ClearScreen();
}
printf("=== Speech Recognition with Next-gen Kaldi ===\n");
printf("------------------------------\n");
if (!sentences_.empty()) {
int32_t i = 1;
for (const auto &p : sentences_) {
printf("[%s] %d. %s\n", p.first.c_str(), i, p.second.c_str());
i += 1;
}
printf("------------------------------\n");
}
if (!current_text_.empty()) {
printf("Recognizing: %s\n", current_text_.c_str());
}
}
private:
static void ClearScreen() {
#ifdef _MSC_VER
system("cls");
#else
system("clear");
#endif
}
static std::string GetCurrentDateTime() {
std::ostringstream os;
auto t = std::time(nullptr);
auto tm = std::localtime(&t);
os << std::put_time(tm, "%Y-%m-%d %H:%M:%S");
return os.str();
}
private:
std::vector<std::pair<std::string, std::string>> sentences_;
std::string current_text_;
};
} // namespace sherpa_onnx::cxx
... ...
... ... @@ -44,8 +44,8 @@ int32_t main() {
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OnlineRecognizer recongizer = OnlineRecognizer::Create(config);
if (!recongizer.Get()) {
OnlineRecognizer recognizer = OnlineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -63,16 +63,16 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OnlineStream stream = recongizer.CreateStream();
OnlineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
stream.InputFinished();
while (recongizer.IsReady(&stream)) {
recongizer.Decode(&stream);
while (recognizer.IsReady(&stream)) {
recognizer.Decode(&stream);
}
OnlineRecognizerResult result = recongizer.GetResult(&stream);
OnlineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
... ... @@ -73,8 +73,8 @@ int32_t main(int argc, char *argv[]) {
config.model_config.provider = use_gpu ? "cuda" : "cpu";
std::cout << "Loading model\n";
OnlineRecognizer recongizer = OnlineRecognizer::Create(config);
if (!recongizer.Get()) {
OnlineRecognizer recognizer = OnlineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -95,16 +95,16 @@ int32_t main(int argc, char *argv[]) {
for (int32_t i = 0; i < num_runs; ++i) {
const auto begin = std::chrono::steady_clock::now();
OnlineStream stream = recongizer.CreateStream();
OnlineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
stream.InputFinished();
while (recongizer.IsReady(&stream)) {
recongizer.Decode(&stream);
while (recognizer.IsReady(&stream)) {
recognizer.Decode(&stream);
}
result = recongizer.GetResult(&stream);
result = recognizer.GetResult(&stream);
auto end = std::chrono::steady_clock::now();
float elapsed_seconds =
... ...
... ... @@ -59,8 +59,8 @@ int32_t main() {
config.hr.rule_fsts = "./replace.fst";
std::cout << "Loading model\n";
OnlineRecognizer recongizer = OnlineRecognizer::Create(config);
if (!recongizer.Get()) {
OnlineRecognizer recognizer = OnlineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -76,16 +76,16 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OnlineStream stream = recongizer.CreateStream();
OnlineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
stream.InputFinished();
while (recongizer.IsReady(&stream)) {
recongizer.Decode(&stream);
while (recognizer.IsReady(&stream)) {
recognizer.Decode(&stream);
}
OnlineRecognizerResult result = recongizer.GetResult(&stream);
OnlineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
... ... @@ -32,8 +32,8 @@ int32_t main() {
config.model_config.num_threads = 1;
std::cout << "Loading model\n";
OfflineRecognizer recongizer = OfflineRecognizer::Create(config);
if (!recongizer.Get()) {
OfflineRecognizer recognizer = OfflineRecognizer::Create(config);
if (!recognizer.Get()) {
std::cerr << "Please check your config\n";
return -1;
}
... ... @@ -49,13 +49,13 @@ int32_t main() {
std::cout << "Start recognition\n";
const auto begin = std::chrono::steady_clock::now();
OfflineStream stream = recongizer.CreateStream();
OfflineStream stream = recognizer.CreateStream();
stream.AcceptWaveform(wave.sample_rate, wave.samples.data(),
wave.samples.size());
recongizer.Decode(&stream);
recognizer.Decode(&stream);
OfflineRecognizerResult result = recongizer.GetResult(&stream);
OfflineRecognizerResult result = recognizer.GetResult(&stream);
const auto end = std::chrono::steady_clock::now();
const float elapsed_seconds =
... ...
... ... @@ -74,7 +74,7 @@ def get_args():
parser.add_argument(
"--num-threads",
type=int,
default=1,
default=2,
help="Number of threads for neural network computation",
)
... ... @@ -164,7 +164,13 @@ def main():
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = args.silero_vad_model
config.silero_vad.min_silence_duration = 0.25
config.silero_vad.threshold = 0.5
config.silero_vad.min_silence_duration = 0.1 # seconds
config.silero_vad.min_speech_duration = 0.25 # seconds
# If the current segment is larger than this value, then it increases
# the threshold to 0.9 internally. After detecting this segment,
# it resets the threshold to its original value.
config.silero_vad.max_speech_duration = 8 # seconds
config.sample_rate = sample_rate
window_size = config.silero_vad.window_size
... ... @@ -184,20 +190,22 @@ def main():
started = False
started_time = None
offset = 0
while not killed:
samples = samples_queue.get() # a blocking read
buffer = np.concatenate([buffer, samples])
offset = 0
while offset + window_size < samples.shape[0]:
vad.accept_waveform(samples[offset : offset + window_size])
while offset + window_size < len(buffer):
vad.accept_waveform(buffer[offset : offset + window_size])
if not started and vad.is_speech_detected():
started = True
started_time = time.time()
offset += window_size
if not started:
buffer = buffer[-10 * window_size :]
if len(buffer) > 10 * window_size:
offset -= len(buffer) - 10 * window_size
buffer = buffer[-10 * window_size :]
if started and time.time() - started_time > 0.2:
stream = recognizer.create_stream()
... ... @@ -223,6 +231,7 @@ def main():
display.update_text(text)
buffer = []
offset = 0
started = False
started_time = None
... ...
... ... @@ -678,4 +678,42 @@ void VoiceActivityDetector::Flush() const {
SherpaOnnxVoiceActivityDetectorFlush(p_);
}
LinearResampler LinearResampler::Create(int32_t samp_rate_in_hz,
int32_t samp_rate_out_hz,
float filter_cutoff_hz,
int32_t num_zeros) {
auto p = SherpaOnnxCreateLinearResampler(samp_rate_in_hz, samp_rate_out_hz,
filter_cutoff_hz, num_zeros);
return LinearResampler(p);
}
LinearResampler::LinearResampler(const SherpaOnnxLinearResampler *p)
: MoveOnly<LinearResampler, SherpaOnnxLinearResampler>(p) {}
void LinearResampler::Destroy(const SherpaOnnxLinearResampler *p) const {
SherpaOnnxDestroyLinearResampler(p);
}
void LinearResampler::Reset() const { SherpaOnnxLinearResamplerReset(p_); }
std::vector<float> LinearResampler::Resample(const float *input,
int32_t input_dim,
bool flush) const {
auto out = SherpaOnnxLinearResamplerResample(p_, input, input_dim, flush);
std::vector<float> ans{out->samples, out->samples + out->n};
SherpaOnnxLinearResamplerResampleFree(out);
return ans;
}
int32_t LinearResampler::GetInputSamplingRate() const {
return SherpaOnnxLinearResamplerResampleGetInputSampleRate(p_);
}
int32_t LinearResampler::GetOutputSamplingRate() const {
return SherpaOnnxLinearResamplerResampleGetOutputSampleRate(p_);
}
} // namespace sherpa_onnx::cxx
... ...
... ... @@ -111,6 +111,7 @@ SHERPA_ONNX_API bool WriteWave(const std::string &filename, const Wave &wave);
template <typename Derived, typename T>
class SHERPA_ONNX_API MoveOnly {
public:
MoveOnly() = default;
explicit MoveOnly(const T *p) : p_(p) {}
~MoveOnly() { Destroy(); }
... ... @@ -591,6 +592,28 @@ class SHERPA_ONNX_API VoiceActivityDetector
explicit VoiceActivityDetector(const SherpaOnnxVoiceActivityDetector *p);
};
class SHERPA_ONNX_API LinearResampler
: public MoveOnly<LinearResampler, SherpaOnnxLinearResampler> {
public:
LinearResampler() = default;
static LinearResampler Create(int32_t samp_rate_in_hz,
int32_t samp_rate_out_hz,
float filter_cutoff_hz, int32_t num_zeros);
void Destroy(const SherpaOnnxLinearResampler *p) const;
void Reset() const;
std::vector<float> Resample(const float *input, int32_t input_dim,
bool flush) const;
int32_t GetInputSamplingRate() const;
int32_t GetOutputSamplingRate() const;
private:
explicit LinearResampler(const SherpaOnnxLinearResampler *p);
};
} // namespace sherpa_onnx::cxx
#endif // SHERPA_ONNX_C_API_CXX_API_H_
... ...
... ... @@ -166,20 +166,32 @@ class HomophoneReplacer::Impl {
}
// convert words to pronunciations
std::vector<std::string> pronunciations;
std::vector<std::string> current_words;
std::vector<std::string> current_pronunciations;
for (const auto &w : words) {
if (w.size() < 3 ||
reinterpret_cast<const uint8_t *>(w.data())[0] < 128) {
if (!current_words.empty()) {
ans += ApplyImpl(current_words, current_pronunciations);
current_words.clear();
current_pronunciations.clear();
}
ans += w;
continue;
}
auto p = ConvertWordToPronunciation(w);
if (config_.debug) {
SHERPA_ONNX_LOGE("%s %s", w.c_str(), p.c_str());
}
pronunciations.push_back(std::move(p));
current_words.push_back(w);
current_pronunciations.push_back(std::move(p));
}
for (const auto &r : replacer_list_) {
ans = r->Normalize(words, pronunciations);
// TODO(fangjun): We support only 1 rule fst at present.
break;
if (!current_words.empty()) {
ans += ApplyImpl(current_words, current_pronunciations);
}
if (config_.debug) {
... ... @@ -190,6 +202,16 @@ class HomophoneReplacer::Impl {
}
private:
std::string ApplyImpl(const std::vector<std::string> &words,
const std::vector<std::string> &pronunciations) const {
std::string ans;
for (const auto &r : replacer_list_) {
ans = r->Normalize(words, pronunciations);
// TODO(fangjun): We support only 1 rule fst at present.
break;
}
return ans;
}
std::string ConvertWordToPronunciation(const std::string &word) const {
if (word2pron_.count(word)) {
return word2pron_.at(word);
... ... @@ -239,6 +261,9 @@ class HomophoneReplacer::Impl {
}
while (iss >> p) {
if (p.back() > '4') {
p.push_back('1');
}
pron.append(std::move(p));
}
... ...