transducer-keyword-decoder.cc
6.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// sherpa-onnx/csrc/transducer-keywords-decoder.cc
//
// Copyright (c) 2023-2024 Xiaomi Corporation
#include "sherpa-onnx/csrc/transducer-keyword-decoder.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <utility>
#include <vector>
#include "sherpa-onnx/csrc/log.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
namespace sherpa_onnx {
TransducerKeywordResult TransducerKeywordDecoder::GetEmptyResult() const {
int32_t context_size = model_->ContextSize();
int32_t blank_id = 0; // always 0
TransducerKeywordResult r;
std::vector<int64_t> blanks(context_size, -1);
blanks.back() = blank_id;
Hypotheses blank_hyp({{blanks, 0}});
r.hyps = std::move(blank_hyp);
return r;
}
void TransducerKeywordDecoder::Decode(
Ort::Value encoder_out, OnlineStream **ss,
std::vector<TransducerKeywordResult> *result) {
std::vector<int64_t> encoder_out_shape =
encoder_out.GetTensorTypeAndShapeInfo().GetShape();
if (encoder_out_shape[0] != result->size()) {
SHERPA_ONNX_LOGE(
"Size mismatch! encoder_out.size(0) %d, result.size(0): %d\n",
static_cast<int32_t>(encoder_out_shape[0]),
static_cast<int32_t>(result->size()));
exit(-1);
}
int32_t batch_size = static_cast<int32_t>(encoder_out_shape[0]);
int32_t num_frames = static_cast<int32_t>(encoder_out_shape[1]);
int32_t vocab_size = model_->VocabSize();
int32_t context_size = model_->ContextSize();
std::vector<int64_t> blanks(context_size, -1);
blanks.back() = 0; // blank_id is hardcoded to 0
std::vector<Hypotheses> cur;
for (auto &r : *result) {
cur.push_back(std::move(r.hyps));
}
std::vector<Hypothesis> prev;
for (int32_t t = 0; t != num_frames; ++t) {
// Due to merging paths with identical token sequences,
// not all utterances have "num_active_paths" paths.
auto hyps_row_splits = GetHypsRowSplits(cur);
int32_t num_hyps =
hyps_row_splits.back(); // total num hyps for all utterance
prev.clear();
for (auto &hyps : cur) {
for (auto &h : hyps) {
prev.push_back(std::move(h.second));
}
}
cur.clear();
cur.reserve(batch_size);
Ort::Value decoder_input = model_->BuildDecoderInput(prev);
Ort::Value decoder_out = model_->RunDecoder(std::move(decoder_input));
Ort::Value cur_encoder_out =
GetEncoderOutFrame(model_->Allocator(), &encoder_out, t);
cur_encoder_out =
Repeat(model_->Allocator(), &cur_encoder_out, hyps_row_splits);
Ort::Value logit =
model_->RunJoiner(std::move(cur_encoder_out), View(&decoder_out));
float *p_logit = logit.GetTensorMutableData<float>();
LogSoftmax(p_logit, vocab_size, num_hyps);
// The acoustic logprobs for current frame
std::vector<float> logprobs(vocab_size * num_hyps);
std::memcpy(logprobs.data(), p_logit,
sizeof(float) * vocab_size * num_hyps);
// now p_logit contains log_softmax output, we rename it to p_logprob
// to match what it actually contains
float *p_logprob = p_logit;
// add log_prob of each hypothesis to p_logprob before taking top_k
for (int32_t i = 0; i != num_hyps; ++i) {
float log_prob = prev[i].log_prob;
for (int32_t k = 0; k != vocab_size; ++k, ++p_logprob) {
*p_logprob += log_prob;
}
}
p_logprob = p_logit; // we changed p_logprob in the above for loop
for (int32_t b = 0; b != batch_size; ++b) {
int32_t frame_offset = (*result)[b].frame_offset;
int32_t start = hyps_row_splits[b];
int32_t end = hyps_row_splits[b + 1];
auto topk =
TopkIndex(p_logprob, vocab_size * (end - start), max_active_paths_);
Hypotheses hyps;
for (auto k : topk) {
int32_t hyp_index = k / vocab_size + start;
int32_t new_token = k % vocab_size;
Hypothesis new_hyp = prev[hyp_index];
float context_score = 0;
auto context_state = new_hyp.context_state;
// blank is hardcoded to 0
// also, it treats unk as blank
if (new_token != 0 && new_token != unk_id_) {
new_hyp.ys.push_back(new_token);
new_hyp.timestamps.push_back(t + frame_offset);
new_hyp.ys_probs.push_back(
exp(logprobs[hyp_index * vocab_size + new_token]));
new_hyp.num_trailing_blanks = 0;
auto context_res = ss[b]->GetContextGraph()->ForwardOneStep(
context_state, new_token);
context_score = std::get<0>(context_res);
new_hyp.context_state = std::get<1>(context_res);
// Start matching from the start state, forget the decoder history.
if (new_hyp.context_state->token == -1) {
new_hyp.ys = blanks;
new_hyp.timestamps.clear();
new_hyp.ys_probs.clear();
}
} else {
++new_hyp.num_trailing_blanks;
}
new_hyp.log_prob = p_logprob[k] + context_score;
hyps.Add(std::move(new_hyp));
} // for (auto k : topk)
auto best_hyp = hyps.GetMostProbable(false);
auto status = ss[b]->GetContextGraph()->IsMatched(best_hyp.context_state);
bool matched = std::get<0>(status);
const ContextState *matched_state = std::get<1>(status);
if (matched) {
float ys_prob = 0.0;
for (int32_t i = 0; i < matched_state->level; ++i) {
ys_prob += best_hyp.ys_probs[i];
}
ys_prob /= matched_state->level;
if (best_hyp.num_trailing_blanks > num_trailing_blanks_ &&
ys_prob >= matched_state->ac_threshold) {
auto &r = (*result)[b];
r.tokens = {best_hyp.ys.end() - matched_state->level,
best_hyp.ys.end()};
r.timestamps = {best_hyp.timestamps.end() - matched_state->level,
best_hyp.timestamps.end()};
r.keyword = matched_state->phrase;
hyps = Hypotheses({{blanks, 0, ss[b]->GetContextGraph()->Root()}});
}
}
cur.push_back(std::move(hyps));
p_logprob += (end - start) * vocab_size;
} // for (int32_t b = 0; b != batch_size; ++b)
}
for (int32_t b = 0; b != batch_size; ++b) {
auto &hyps = cur[b];
auto best_hyp = hyps.GetMostProbable(false);
auto &r = (*result)[b];
r.hyps = std::move(hyps);
r.num_trailing_blanks = best_hyp.num_trailing_blanks;
r.frame_offset += num_frames;
}
}
} // namespace sherpa_onnx