offline-stream.cc 12.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
// sherpa-onnx/csrc/offline-stream.cc
//
// Copyright (c)  2023  Xiaomi Corporation

#include "sherpa-onnx/csrc/offline-stream.h"

#include <algorithm>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <limits>
#include <utility>

#include "kaldi-native-fbank/csrc/online-feature.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/offline-recognizer.h"
#include "sherpa-onnx/csrc/resample.h"

namespace sherpa_onnx {

/* Compute mean and inverse stddev over rows.
 *
 * @param p  A pointer to a 2-d array of shape (num_rows, num_cols)
 * @param num_rows Number of rows
 * @param num_cols Number of columns
 * @param mean On return, it contains p.mean(axis=0)
 * @param inv_stddev On return, it contains 1/p.std(axis=0)
 */
static void ComputeMeanAndInvStd(const float *p, int32_t num_rows,
                                 int32_t num_cols, std::vector<float> *mean,
                                 std::vector<float> *inv_stddev) {
  std::vector<float> sum(num_cols);
  std::vector<float> sum_sq(num_cols);

  for (int32_t i = 0; i != num_rows; ++i) {
    for (int32_t c = 0; c != num_cols; ++c) {
      auto t = p[c];
      sum[c] += t;
      sum_sq[c] += t * t;
    }
    p += num_cols;
  }

  mean->resize(num_cols);
  inv_stddev->resize(num_cols);

  for (int32_t i = 0; i != num_cols; ++i) {
    auto t = sum[i] / num_rows;
    (*mean)[i] = t;

    float stddev = std::sqrt(sum_sq[i] / num_rows - t * t);

    if (stddev != stddev) {
      stddev = 0;
    }

    (*inv_stddev)[i] = 1.0f / (stddev + 1e-5f);
  }
}

class OfflineStream::Impl {
 public:
  explicit Impl(const FeatureExtractorConfig &config,
                ContextGraphPtr context_graph)
      : config_(config), context_graph_(std::move(context_graph)) {
    if (config.is_mfcc) {
      mfcc_opts_.frame_opts.dither = config_.dither;
      mfcc_opts_.frame_opts.snip_edges = config_.snip_edges;
      mfcc_opts_.frame_opts.samp_freq = config_.sampling_rate;
      mfcc_opts_.frame_opts.frame_shift_ms = config_.frame_shift_ms;
      mfcc_opts_.frame_opts.frame_length_ms = config_.frame_length_ms;
      mfcc_opts_.frame_opts.remove_dc_offset = config_.remove_dc_offset;
      mfcc_opts_.frame_opts.window_type = config_.window_type;

      mfcc_opts_.mel_opts.num_bins = config_.feature_dim;

      mfcc_opts_.mel_opts.high_freq = config_.high_freq;
      mfcc_opts_.mel_opts.low_freq = config_.low_freq;

      mfcc_opts_.mel_opts.is_librosa = config_.is_librosa;

      mfcc_opts_.num_ceps = config_.num_ceps;
      mfcc_opts_.use_energy = config_.use_energy;

      mfcc_ = std::make_unique<knf::OnlineMfcc>(mfcc_opts_);
    } else {
      opts_.frame_opts.dither = config.dither;
      opts_.frame_opts.snip_edges = config.snip_edges;
      opts_.frame_opts.samp_freq = config.sampling_rate;
      opts_.frame_opts.frame_shift_ms = config.frame_shift_ms;
      opts_.frame_opts.frame_length_ms = config.frame_length_ms;
      opts_.frame_opts.remove_dc_offset = config.remove_dc_offset;
      opts_.frame_opts.window_type = config.window_type;

      opts_.mel_opts.num_bins = config.feature_dim;

      opts_.mel_opts.high_freq = config.high_freq;
      opts_.mel_opts.low_freq = config.low_freq;

      opts_.mel_opts.is_librosa = config.is_librosa;

      fbank_ = std::make_unique<knf::OnlineFbank>(opts_);
    }
  }

  explicit Impl(WhisperTag tag) {
    config_.normalize_samples = true;
    opts_.frame_opts.samp_freq = 16000;
    opts_.mel_opts.num_bins = tag.dim;

    knf::WhisperFeatureOptions whisper_opts;
    whisper_opts.frame_opts = opts_.frame_opts;
    whisper_opts.dim = tag.dim;

    whisper_fbank_ = std::make_unique<knf::OnlineWhisperFbank>(whisper_opts);
    config_.sampling_rate = opts_.frame_opts.samp_freq;
  }

  explicit Impl(CEDTag /*tag*/) : is_ced_(true) {
    // see
    // https://github.com/RicherMans/CED/blob/main/onnx_inference_with_kaldi.py

    opts_.frame_opts.frame_length_ms = 32;
    opts_.frame_opts.dither = 0;
    opts_.frame_opts.preemph_coeff = 0;
    opts_.frame_opts.remove_dc_offset = false;
    opts_.frame_opts.window_type = "hann";
    opts_.frame_opts.snip_edges = false;

    opts_.frame_opts.samp_freq = 16000;  // fixed to 16000
    opts_.mel_opts.num_bins = 64;
    opts_.mel_opts.low_freq = 0;
    opts_.mel_opts.high_freq = 8000;
    opts_.use_log_fbank = false;

    config_.sampling_rate = opts_.frame_opts.samp_freq;

    fbank_ = std::make_unique<knf::OnlineFbank>(opts_);
  }

  explicit Impl(MoonshineTag /*tag*/) : is_moonshine_(true) {
    config_.sampling_rate = 16000;
  }

  void AcceptWaveform(int32_t sampling_rate, const float *waveform, int32_t n) {
    if (config_.normalize_samples) {
      AcceptWaveformImpl(sampling_rate, waveform, n);
    } else {
      std::vector<float> buf(n);
      for (int32_t i = 0; i != n; ++i) {
        buf[i] = waveform[i] * 32768;
      }
      AcceptWaveformImpl(sampling_rate, buf.data(), n);
    }
  }

  void AcceptWaveformImpl(int32_t sampling_rate, const float *waveform,
                          int32_t n) {
    if (sampling_rate != config_.sampling_rate) {
      SHERPA_ONNX_LOGE(
          "Creating a resampler:\n"
          "   in_sample_rate: %d\n"
          "   output_sample_rate: %d\n",
          sampling_rate, static_cast<int32_t>(config_.sampling_rate));

      float min_freq = std::min<int32_t>(sampling_rate, config_.sampling_rate);
      float lowpass_cutoff = 0.99 * 0.5 * min_freq;

      int32_t lowpass_filter_width = 6;
      auto resampler = std::make_unique<LinearResample>(
          sampling_rate, config_.sampling_rate, lowpass_cutoff,
          lowpass_filter_width);
      std::vector<float> samples;
      resampler->Resample(waveform, n, true, &samples);

      if (is_moonshine_) {
        samples_.insert(samples_.end(), samples.begin(), samples.end());
      } else if (fbank_) {
        fbank_->AcceptWaveform(config_.sampling_rate, samples.data(),
                               samples.size());
        fbank_->InputFinished();
      } else if (mfcc_) {
        mfcc_->AcceptWaveform(config_.sampling_rate, samples.data(),
                              samples.size());
        mfcc_->InputFinished();
      } else {
        whisper_fbank_->AcceptWaveform(config_.sampling_rate, samples.data(),
                                       samples.size());
        whisper_fbank_->InputFinished();
      }

      return;
    }  // if (sampling_rate != config_.sampling_rate)

    if (is_moonshine_) {
      samples_.insert(samples_.end(), waveform, waveform + n);
    } else if (fbank_) {
      fbank_->AcceptWaveform(sampling_rate, waveform, n);
      fbank_->InputFinished();
    } else if (mfcc_) {
      mfcc_->AcceptWaveform(sampling_rate, waveform, n);
      mfcc_->InputFinished();
    } else {
      whisper_fbank_->AcceptWaveform(sampling_rate, waveform, n);
      whisper_fbank_->InputFinished();
    }
  }

  int32_t FeatureDim() const {
    if (is_moonshine_) {
      return samples_.size();
    }

    return mfcc_ ? mfcc_opts_.num_ceps : opts_.mel_opts.num_bins;
  }

  std::vector<float> GetFrames() const {
    if (is_moonshine_) {
      return samples_;
    }

    int32_t n = fbank_  ? fbank_->NumFramesReady()
                : mfcc_ ? mfcc_->NumFramesReady()
                        : whisper_fbank_->NumFramesReady();
    assert(n > 0 && "Please first call AcceptWaveform()");

    int32_t feature_dim = FeatureDim();

    std::vector<float> features(n * feature_dim);

    float *p = features.data();

    for (int32_t i = 0; i != n; ++i) {
      const float *f = fbank_  ? fbank_->GetFrame(i)
                       : mfcc_ ? mfcc_->GetFrame(i)
                               : whisper_fbank_->GetFrame(i);
      std::copy(f, f + feature_dim, p);
      p += feature_dim;
    }

    NemoNormalizeFeatures(features.data(), n, feature_dim);

    if (is_ced_) {
      AmplitudeToDB(features.data(), features.size());
    }

    return features;
  }

  void SetResult(const OfflineRecognitionResult &r) { r_ = r; }

  const OfflineRecognitionResult &GetResult() const { return r_; }

  const ContextGraphPtr &GetContextGraph() const { return context_graph_; }

 private:
  // see
  // https://github.com/pytorch/audio/blob/main/src/torchaudio/functional/functional.py#L359
  void AmplitudeToDB(float *p, int32_t n) const {
    float multiplier = 10;
    float top_db = 120;
    float amin = 1e-10;

    float max_x = std::numeric_limits<float>::min();

    for (int32_t i = 0; i != n; ++i) {
      float x = p[i];
      x = (x > amin) ? x : amin;
      x = log10f(x) * multiplier;

      max_x = (x > max_x) ? x : max_x;
      p[i] = x;
    }

    float d = max_x - top_db;
    for (int32_t i = 0; i != n; ++i) {
      float x = p[i];
      x = (x > d) ? x : d;
      p[i] = x;
    }
  }

  void NemoNormalizeFeatures(float *p, int32_t num_frames,
                             int32_t feature_dim) const {
    if (config_.nemo_normalize_type.empty()) {
      return;
    }

    if (config_.nemo_normalize_type != "per_feature") {
      SHERPA_ONNX_LOGE(
          "Only normalize_type=per_feature is implemented. Given: %s",
          config_.nemo_normalize_type.c_str());
      exit(-1);
    }

    NemoNormalizePerFeature(p, num_frames, feature_dim);
  }

  static void NemoNormalizePerFeature(float *p, int32_t num_frames,
                                      int32_t feature_dim) {
    std::vector<float> mean;
    std::vector<float> inv_stddev;

    ComputeMeanAndInvStd(p, num_frames, feature_dim, &mean, &inv_stddev);

    for (int32_t n = 0; n != num_frames; ++n) {
      for (int32_t i = 0; i != feature_dim; ++i) {
        p[i] = (p[i] - mean[i]) * inv_stddev[i];
      }
      p += feature_dim;
    }
  }

 private:
  FeatureExtractorConfig config_;
  std::unique_ptr<knf::OnlineFbank> fbank_;
  std::unique_ptr<knf::OnlineMfcc> mfcc_;
  std::unique_ptr<knf::OnlineWhisperFbank> whisper_fbank_;
  knf::FbankOptions opts_;
  knf::MfccOptions mfcc_opts_;
  OfflineRecognitionResult r_;
  ContextGraphPtr context_graph_;
  bool is_ced_ = false;
  bool is_moonshine_ = false;

  // used only when is_moonshine_== true
  std::vector<float> samples_;
};

OfflineStream::OfflineStream(const FeatureExtractorConfig &config /*= {}*/,
                             ContextGraphPtr context_graph /*= nullptr*/)
    : impl_(std::make_unique<Impl>(config, std::move(context_graph))) {}

OfflineStream::OfflineStream(WhisperTag tag)
    : impl_(std::make_unique<Impl>(tag)) {}

OfflineStream::OfflineStream(CEDTag tag) : impl_(std::make_unique<Impl>(tag)) {}

OfflineStream::OfflineStream(MoonshineTag tag)
    : impl_(std::make_unique<Impl>(tag)) {}

OfflineStream::~OfflineStream() = default;

void OfflineStream::AcceptWaveform(int32_t sampling_rate, const float *waveform,
                                   int32_t n) const {
  impl_->AcceptWaveform(sampling_rate, waveform, n);
}

int32_t OfflineStream::FeatureDim() const { return impl_->FeatureDim(); }

std::vector<float> OfflineStream::GetFrames() const {
  return impl_->GetFrames();
}

void OfflineStream::SetResult(const OfflineRecognitionResult &r) {
  impl_->SetResult(r);
}

const ContextGraphPtr &OfflineStream::GetContextGraph() const {
  return impl_->GetContextGraph();
}

const OfflineRecognitionResult &OfflineStream::GetResult() const {
  return impl_->GetResult();
}
std::string OfflineRecognitionResult::AsJsonString() const {
  std::ostringstream os;
  os << "{";

  os << "\"lang\""
     << ": ";
  os << std::quoted(lang) << ", ";

  os << "\"emotion\""
     << ": ";
  os << std::quoted(emotion) << ", ";

  os << "\"event\""
     << ": ";
  os << std::quoted(event) << ", ";

  os << "\"text\""
     << ": ";
  os << std::quoted(text) << ", ";

  os << "\""
     << "timestamps"
     << "\""
     << ": ";
  os << "[";

  std::string sep = "";
  for (auto t : timestamps) {
    os << sep << std::fixed << std::setprecision(2) << t;
    sep = ", ";
  }
  os << "], ";

  os << "\""
     << "durations"
     << "\""
     << ": ";
  os << "[";
  sep = "";
  for (auto d : durations) {
    os << sep << std::fixed << std::setprecision(2) << d;
    sep = ", ";
  }
  os << "], ";

  os << "\""
     << "tokens"
     << "\""
     << ":";
  os << "[";

  sep = "";
  auto oldFlags = os.flags();
  for (const auto &t : tokens) {
    if (t.size() == 1 && static_cast<uint8_t>(t[0]) > 0x7f) {
      const uint8_t *p = reinterpret_cast<const uint8_t *>(t.c_str());
      os << sep << "\""
         << "<0x" << std::hex << std::uppercase << static_cast<uint32_t>(p[0])
         << ">"
         << "\"";
      os.flags(oldFlags);
    } else {
      os << sep << std::quoted(t);
    }
    sep = ", ";
  }
  os << "], ";

  sep = "";

  os << "\""
     << "words"
     << "\""
     << ": ";
  os << "[";
  for (int32_t w : words) {
    os << sep << w;
    sep = ", ";
  }

  os << "]";
  os << "}";

  return os.str();
}
}  // namespace sherpa_onnx